Larval settlement in benthic environments: The effects of velocity and bed element geometry

J.T. Fingerut, D.D. Hart, Jim THOMSON

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Fluid-mediated transport can play a key role in determining patterns of distribution and abundance for many benthic invertebrates. One critical challenge in understanding this process is to determine how flow patterns affect larval settlement, especially in those benthic environments where near-bed flows interact with irregular bed topography to create complex variations in habitat suitability and settlement probability. Boundary-layer separation over topographical projections on an irregular bed can create two distinct regions of near-bed flow (i.e., accelerating flow over the forebody and a zone dominated by slower eddies over the aftbody) that may have different effects on larval settlement. We manipulated the flow over a convex roughness element (i.e., hemicylinder) in a flume and examined how the settlement of larvae of the black fly Simulium tribulatum varied with changes in near-bed velocity and location over the substrate. Larval settlement rate was standardised to correct for variations in larval supply (i.e., among-trial differences in the concentration of larvae in suspension). Our analyses showed that position on the hemicylinder and near-bed velocity both affected settlement rate, with a strong interaction effect. In particular, the observed relationship between settlement rate and velocity was negative on the substrate's forebody and positive on the aftbody. We explore these results by considering potential physical and behavioural mechanisms affecting larval settlement. The presence of a positive relationship between flow and settlement rate in the aftbody may allow settlement on bed elements in habitat where preferred fast-flow conditions are present, but where settlement would otherwise by hydrodynamically limited. Thus, greater attention to settlement mechanisms in more realistic, topographically complex environments can not only help explain distribution patterns within substrates, but also among substrates and across habitats.
Original languageEnglish
Pages (from-to)904-915
Number of pages12
JournalFreshwater Biology
Volume56
Issue number5
DOIs
Publication statusPublished - 2011
Externally publishedYes

Fingerprint

benthic environment
benthic zone
larval settlement
geometry
substrate
habitat
larva
habitats
Simulium
Simuliidae
larvae
flow pattern
roughness
effect
eddy
boundary layer
invertebrate
topography
invertebrates
fluid

Cite this

Fingerut, J.T. ; Hart, D.D. ; THOMSON, Jim. / Larval settlement in benthic environments: The effects of velocity and bed element geometry. In: Freshwater Biology. 2011 ; Vol. 56, No. 5. pp. 904-915.
@article{2131caa403f3404e93ec88e68ab5853e,
title = "Larval settlement in benthic environments: The effects of velocity and bed element geometry",
abstract = "Fluid-mediated transport can play a key role in determining patterns of distribution and abundance for many benthic invertebrates. One critical challenge in understanding this process is to determine how flow patterns affect larval settlement, especially in those benthic environments where near-bed flows interact with irregular bed topography to create complex variations in habitat suitability and settlement probability. Boundary-layer separation over topographical projections on an irregular bed can create two distinct regions of near-bed flow (i.e., accelerating flow over the forebody and a zone dominated by slower eddies over the aftbody) that may have different effects on larval settlement. We manipulated the flow over a convex roughness element (i.e., hemicylinder) in a flume and examined how the settlement of larvae of the black fly Simulium tribulatum varied with changes in near-bed velocity and location over the substrate. Larval settlement rate was standardised to correct for variations in larval supply (i.e., among-trial differences in the concentration of larvae in suspension). Our analyses showed that position on the hemicylinder and near-bed velocity both affected settlement rate, with a strong interaction effect. In particular, the observed relationship between settlement rate and velocity was negative on the substrate's forebody and positive on the aftbody. We explore these results by considering potential physical and behavioural mechanisms affecting larval settlement. The presence of a positive relationship between flow and settlement rate in the aftbody may allow settlement on bed elements in habitat where preferred fast-flow conditions are present, but where settlement would otherwise by hydrodynamically limited. Thus, greater attention to settlement mechanisms in more realistic, topographically complex environments can not only help explain distribution patterns within substrates, but also among substrates and across habitats.",
keywords = "Flow, Larvae, Settlement, Stream, Substrate.",
author = "J.T. Fingerut and D.D. Hart and Jim THOMSON",
year = "2011",
doi = "10.1111/j.1365-2427.2010.02535.x",
language = "English",
volume = "56",
pages = "904--915",
journal = "Freshwater Biology",
issn = "0046-5070",
publisher = "Wiley-Blackwell",
number = "5",

}

Larval settlement in benthic environments: The effects of velocity and bed element geometry. / Fingerut, J.T.; Hart, D.D.; THOMSON, Jim.

In: Freshwater Biology, Vol. 56, No. 5, 2011, p. 904-915.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Larval settlement in benthic environments: The effects of velocity and bed element geometry

AU - Fingerut, J.T.

AU - Hart, D.D.

AU - THOMSON, Jim

PY - 2011

Y1 - 2011

N2 - Fluid-mediated transport can play a key role in determining patterns of distribution and abundance for many benthic invertebrates. One critical challenge in understanding this process is to determine how flow patterns affect larval settlement, especially in those benthic environments where near-bed flows interact with irregular bed topography to create complex variations in habitat suitability and settlement probability. Boundary-layer separation over topographical projections on an irregular bed can create two distinct regions of near-bed flow (i.e., accelerating flow over the forebody and a zone dominated by slower eddies over the aftbody) that may have different effects on larval settlement. We manipulated the flow over a convex roughness element (i.e., hemicylinder) in a flume and examined how the settlement of larvae of the black fly Simulium tribulatum varied with changes in near-bed velocity and location over the substrate. Larval settlement rate was standardised to correct for variations in larval supply (i.e., among-trial differences in the concentration of larvae in suspension). Our analyses showed that position on the hemicylinder and near-bed velocity both affected settlement rate, with a strong interaction effect. In particular, the observed relationship between settlement rate and velocity was negative on the substrate's forebody and positive on the aftbody. We explore these results by considering potential physical and behavioural mechanisms affecting larval settlement. The presence of a positive relationship between flow and settlement rate in the aftbody may allow settlement on bed elements in habitat where preferred fast-flow conditions are present, but where settlement would otherwise by hydrodynamically limited. Thus, greater attention to settlement mechanisms in more realistic, topographically complex environments can not only help explain distribution patterns within substrates, but also among substrates and across habitats.

AB - Fluid-mediated transport can play a key role in determining patterns of distribution and abundance for many benthic invertebrates. One critical challenge in understanding this process is to determine how flow patterns affect larval settlement, especially in those benthic environments where near-bed flows interact with irregular bed topography to create complex variations in habitat suitability and settlement probability. Boundary-layer separation over topographical projections on an irregular bed can create two distinct regions of near-bed flow (i.e., accelerating flow over the forebody and a zone dominated by slower eddies over the aftbody) that may have different effects on larval settlement. We manipulated the flow over a convex roughness element (i.e., hemicylinder) in a flume and examined how the settlement of larvae of the black fly Simulium tribulatum varied with changes in near-bed velocity and location over the substrate. Larval settlement rate was standardised to correct for variations in larval supply (i.e., among-trial differences in the concentration of larvae in suspension). Our analyses showed that position on the hemicylinder and near-bed velocity both affected settlement rate, with a strong interaction effect. In particular, the observed relationship between settlement rate and velocity was negative on the substrate's forebody and positive on the aftbody. We explore these results by considering potential physical and behavioural mechanisms affecting larval settlement. The presence of a positive relationship between flow and settlement rate in the aftbody may allow settlement on bed elements in habitat where preferred fast-flow conditions are present, but where settlement would otherwise by hydrodynamically limited. Thus, greater attention to settlement mechanisms in more realistic, topographically complex environments can not only help explain distribution patterns within substrates, but also among substrates and across habitats.

KW - Flow

KW - Larvae

KW - Settlement

KW - Stream

KW - Substrate.

U2 - 10.1111/j.1365-2427.2010.02535.x

DO - 10.1111/j.1365-2427.2010.02535.x

M3 - Article

VL - 56

SP - 904

EP - 915

JO - Freshwater Biology

JF - Freshwater Biology

SN - 0046-5070

IS - 5

ER -