Low biological fluctuation of mitochondrial CpG and non-CpG methylation at the single-molecule level

Chloe Goldsmith, Jesús Rafael Rodríguez-Aguilera, Ines El-Rifai, Adrien Jarretier-Yuste, Valérie Hervieu, Olivier Raineteau, Pierre Saintigny, Victoria Chagoya de Sánchez, Robert Dante, Gabriel Ichim, Hector Hernandez-Vargas

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
51 Downloads (Pure)

Abstract

Mammalian cytosine DNA methylation (5mC) is associated with the integrity of the genome and the transcriptional status of nuclear DNA. Due to technical limitations, it has been less clear if mitochondrial DNA (mtDNA) is methylated and whether 5mC has a regulatory role in this context. Here, we used bisulfite-independent single-molecule sequencing of native human and mouse DNA to study mitochondrial 5mC across different biological conditions. We first validated the ability of long-read nanopore sequencing to detect 5mC in CpG (5mCpG) and non-CpG (5mCpH) context in nuclear DNA at expected genomic locations (i.e. promoters, gene bodies, enhancers, and cell type-specific transcription factor binding sites). Next, using high coverage nanopore sequencing we found low levels of mtDNA CpG and CpH methylation (with several exceptions) and little variation across biological processes: differentiation, oxidative stress, and cancer. 5mCpG and 5mCpH were overall higher in tissues compared to cell lines, with small additional variation between cell lines of different origin. Despite general low levels, global and single-base differences were found in cancer tissues compared to their adjacent counterparts, in particular for 5mCpG. In conclusion, nanopore sequencing is a useful tool for the detection of modified DNA bases on mitochondria that avoid the biases introduced by bisulfite and PCR amplification. Enhanced nanopore basecalling models will provide further resolution on the small size effects detected here, as well as rule out the presence of other DNA modifications such as oxidized forms of 5mC.

Original languageEnglish
Article number8032
Pages (from-to)1-17
Number of pages17
JournalScientific Reports
Volume11
Issue number1
DOIs
Publication statusPublished - Apr 2021
Externally publishedYes

Cite this