Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS

Bill MAHER, Michael Ellwood, Georg Raber, Simon FOSTER

    Research output: Contribution to journalArticle

    31 Citations (Scopus)

    Abstract

    The importance of measuring arsenic (As) species has been appreciated for a long time mainly because of the wide spread knowledge of arsenic's toxicity and its use as a poison. Increasingly health, environmental and food regulations have been written around As species rather than total concentrations. Knowledge of As speciation is important as the chemical form of As controls its bioavailability, toxicity, mobility and therapeutic benefits. Arsenic is present as inorganic (arsenate, arsenite, thioarsenates), complexed (arsenic glutathionines and phytochelatins), low molecular weight (monomethylarsonate, dimethylarsenate, arsenobetaine, arsenocholine etc.) and high molecular weight (arsenic hydrocarbons and arsenic phospholipids) species. In this review we cover the intergrity of As species during collection, storage, sample preparation and measurement by HPLC-ICPMS and HPLC-HG-AFS. It is essential to ensure that As species, especially in waters and sediments, are not artefacts of the preservation or extraction procedure. Most samples can be stored frozen (−20 °C), but the stability of water and sediment samples is matrix dependent and depends on preservation technique applied. Arsenic cannot be extracted from samples using a single set of conditions but must be optimised for each sample type. Methanol–water mixtures with microwave heating are commonly used to extract polar As species from tissues while As-lipids required a non-polar solvent. Dilute acid can be used to increase the efficiencies of extraction of hard to extract tissue As species. Freeze drying is suitable for the drying of biotic material while sediments should not be dried before analysis. Extraction efficiencies are critically dependent on particle size. Polar As species have a wide variety of ionic characteristics thus complimentary chromatographic approaches utilising ion-exchange or reverse phase columns with modifiers are needed to separate all the As species. Arsenic-lipids require the use of a reverse phase column and gradient elution with high concentrations of organic solvents and require compensation for carbon enhancement effects in the ICPMS. Care must be taken that chromatographic peaks are not misidentified and matrix interferences accounted for that may influence quantification. Finally, to ensure accurate results, mass balances and extraction and column recoveries need to be determined at all steps. Methods need to be evaluated using As spikes and certified reference materials to provide a means of assessing the quality of results
    Original languageEnglish
    Pages (from-to)2129-2183
    Number of pages55
    JournalJournal of Analytical Atomic Spectrometry
    Volume30
    DOIs
    Publication statusPublished - 2015

    Fingerprint

    Arsenic
    Fluids
    Sediments
    Toxicity
    Drying
    Phytochelatins
    Molecular weight
    Lipids
    Microwave heating
    Tissue Extracts
    Water
    Poisons
    Hydrocarbons

    Cite this

    @article{62abcf11ce32454b8428735560db55eb,
    title = "Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS",
    abstract = "The importance of measuring arsenic (As) species has been appreciated for a long time mainly because of the wide spread knowledge of arsenic's toxicity and its use as a poison. Increasingly health, environmental and food regulations have been written around As species rather than total concentrations. Knowledge of As speciation is important as the chemical form of As controls its bioavailability, toxicity, mobility and therapeutic benefits. Arsenic is present as inorganic (arsenate, arsenite, thioarsenates), complexed (arsenic glutathionines and phytochelatins), low molecular weight (monomethylarsonate, dimethylarsenate, arsenobetaine, arsenocholine etc.) and high molecular weight (arsenic hydrocarbons and arsenic phospholipids) species. In this review we cover the intergrity of As species during collection, storage, sample preparation and measurement by HPLC-ICPMS and HPLC-HG-AFS. It is essential to ensure that As species, especially in waters and sediments, are not artefacts of the preservation or extraction procedure. Most samples can be stored frozen (−20 °C), but the stability of water and sediment samples is matrix dependent and depends on preservation technique applied. Arsenic cannot be extracted from samples using a single set of conditions but must be optimised for each sample type. Methanol–water mixtures with microwave heating are commonly used to extract polar As species from tissues while As-lipids required a non-polar solvent. Dilute acid can be used to increase the efficiencies of extraction of hard to extract tissue As species. Freeze drying is suitable for the drying of biotic material while sediments should not be dried before analysis. Extraction efficiencies are critically dependent on particle size. Polar As species have a wide variety of ionic characteristics thus complimentary chromatographic approaches utilising ion-exchange or reverse phase columns with modifiers are needed to separate all the As species. Arsenic-lipids require the use of a reverse phase column and gradient elution with high concentrations of organic solvents and require compensation for carbon enhancement effects in the ICPMS. Care must be taken that chromatographic peaks are not misidentified and matrix interferences accounted for that may influence quantification. Finally, to ensure accurate results, mass balances and extraction and column recoveries need to be determined at all steps. Methods need to be evaluated using As spikes and certified reference materials to provide a means of assessing the quality of results",
    author = "Bill MAHER and Michael Ellwood and Georg Raber and Simon FOSTER",
    year = "2015",
    doi = "10.1039/c5ja00155b",
    language = "English",
    volume = "30",
    pages = "2129--2183",
    journal = "Annual Reports on Analytical Atomic Spectroscopy",
    issn = "0267-9477",
    publisher = "Royal Society of Chemistry",

    }

    Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS. / MAHER, Bill; Ellwood, Michael; Raber, Georg; FOSTER, Simon.

    In: Journal of Analytical Atomic Spectrometry, Vol. 30, 2015, p. 2129-2183.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS

    AU - MAHER, Bill

    AU - Ellwood, Michael

    AU - Raber, Georg

    AU - FOSTER, Simon

    PY - 2015

    Y1 - 2015

    N2 - The importance of measuring arsenic (As) species has been appreciated for a long time mainly because of the wide spread knowledge of arsenic's toxicity and its use as a poison. Increasingly health, environmental and food regulations have been written around As species rather than total concentrations. Knowledge of As speciation is important as the chemical form of As controls its bioavailability, toxicity, mobility and therapeutic benefits. Arsenic is present as inorganic (arsenate, arsenite, thioarsenates), complexed (arsenic glutathionines and phytochelatins), low molecular weight (monomethylarsonate, dimethylarsenate, arsenobetaine, arsenocholine etc.) and high molecular weight (arsenic hydrocarbons and arsenic phospholipids) species. In this review we cover the intergrity of As species during collection, storage, sample preparation and measurement by HPLC-ICPMS and HPLC-HG-AFS. It is essential to ensure that As species, especially in waters and sediments, are not artefacts of the preservation or extraction procedure. Most samples can be stored frozen (−20 °C), but the stability of water and sediment samples is matrix dependent and depends on preservation technique applied. Arsenic cannot be extracted from samples using a single set of conditions but must be optimised for each sample type. Methanol–water mixtures with microwave heating are commonly used to extract polar As species from tissues while As-lipids required a non-polar solvent. Dilute acid can be used to increase the efficiencies of extraction of hard to extract tissue As species. Freeze drying is suitable for the drying of biotic material while sediments should not be dried before analysis. Extraction efficiencies are critically dependent on particle size. Polar As species have a wide variety of ionic characteristics thus complimentary chromatographic approaches utilising ion-exchange or reverse phase columns with modifiers are needed to separate all the As species. Arsenic-lipids require the use of a reverse phase column and gradient elution with high concentrations of organic solvents and require compensation for carbon enhancement effects in the ICPMS. Care must be taken that chromatographic peaks are not misidentified and matrix interferences accounted for that may influence quantification. Finally, to ensure accurate results, mass balances and extraction and column recoveries need to be determined at all steps. Methods need to be evaluated using As spikes and certified reference materials to provide a means of assessing the quality of results

    AB - The importance of measuring arsenic (As) species has been appreciated for a long time mainly because of the wide spread knowledge of arsenic's toxicity and its use as a poison. Increasingly health, environmental and food regulations have been written around As species rather than total concentrations. Knowledge of As speciation is important as the chemical form of As controls its bioavailability, toxicity, mobility and therapeutic benefits. Arsenic is present as inorganic (arsenate, arsenite, thioarsenates), complexed (arsenic glutathionines and phytochelatins), low molecular weight (monomethylarsonate, dimethylarsenate, arsenobetaine, arsenocholine etc.) and high molecular weight (arsenic hydrocarbons and arsenic phospholipids) species. In this review we cover the intergrity of As species during collection, storage, sample preparation and measurement by HPLC-ICPMS and HPLC-HG-AFS. It is essential to ensure that As species, especially in waters and sediments, are not artefacts of the preservation or extraction procedure. Most samples can be stored frozen (−20 °C), but the stability of water and sediment samples is matrix dependent and depends on preservation technique applied. Arsenic cannot be extracted from samples using a single set of conditions but must be optimised for each sample type. Methanol–water mixtures with microwave heating are commonly used to extract polar As species from tissues while As-lipids required a non-polar solvent. Dilute acid can be used to increase the efficiencies of extraction of hard to extract tissue As species. Freeze drying is suitable for the drying of biotic material while sediments should not be dried before analysis. Extraction efficiencies are critically dependent on particle size. Polar As species have a wide variety of ionic characteristics thus complimentary chromatographic approaches utilising ion-exchange or reverse phase columns with modifiers are needed to separate all the As species. Arsenic-lipids require the use of a reverse phase column and gradient elution with high concentrations of organic solvents and require compensation for carbon enhancement effects in the ICPMS. Care must be taken that chromatographic peaks are not misidentified and matrix interferences accounted for that may influence quantification. Finally, to ensure accurate results, mass balances and extraction and column recoveries need to be determined at all steps. Methods need to be evaluated using As spikes and certified reference materials to provide a means of assessing the quality of results

    U2 - 10.1039/c5ja00155b

    DO - 10.1039/c5ja00155b

    M3 - Article

    VL - 30

    SP - 2129

    EP - 2183

    JO - Annual Reports on Analytical Atomic Spectroscopy

    JF - Annual Reports on Analytical Atomic Spectroscopy

    SN - 0267-9477

    ER -