Multi-modal Framework for Analyzing the Affect of a Group of People

Xiaohua Huang, Abhinav Dhall, Roland Goecke, Matti Pietikainen, Guoying Zhao

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

With the advances in multimedia and the world wide web, users upload millions of images and videos everyone on social networking platforms on the Internet. From the perspective of automatic human behavior understanding, it is of interest to analyze and model the affects that are exhibited by groups of people who are participating in social events in these images. However, the analysis of the affect that is expressed by multiple people is challenging due to the varied indoor and outdoor settings. Recently, a few interesting works have investigated face-based Group-level Emotion Recognition (GER). In this paper, we propose a multi-modal framework for enhancing the affective analysis ability of GER in challenging environments. Specifically, for encoding a person's information in a group-level image, we first propose an information aggregation method for generating feature descriptions of face, upper body and scene. Later, we revisit localized multiple kernel learning for fusing face, upper body and scene information for GER against challenging environments. Intensive experiments are performed on two challenging group-level emotion databases (HAPPEI and GAFF) to investigate the roles of the face, upper body, scene information and the multi-modal framework. Experimental results demonstrate that the multi-modal framework achieves promising performance for GER.

Original languageEnglish
Article number8323249
Pages (from-to)2706-2721
Number of pages16
JournalIEEE Transactions on Multimedia
Volume20
Issue number10
DOIs
Publication statusPublished - Oct 2018

Cite this