TY - JOUR
T1 - Network analysis for projects with high risk levels in uncertain environments
AU - Abdel-Basset, Mohamed
AU - Atef, Asmaa
AU - Abouhawwash, Mohamed
AU - Nam, Yunyoung
AU - AbdelAziz, Nabil M.
N1 - Funding Information:
This work was supported by the Soonchunhyang University Research Fund.
Publisher Copyright:
© 2021 Tech Science Press. All rights reserved.
PY - 2021
Y1 - 2021
N2 - The critical path method is one of the oldest and most important techniques used for planning and scheduling projects. The main objective of project management science is to determine the critical path through a network representation of projects. The critical path through a network can be determined by many algorithms and is useful for managing, monitoring, and controlling the time and cost of an entire project. The essential problem in this case is that activity durations are uncertain; time presents considerable uncertainty because the time of an activity is not always easily or accurately estimated. This issue increases the need to use neutrosophic theory to solve the critical path problem. Real-world problems are characterized by a lack of precision, consistency, and completeness. The concept of neutrosophic sets has been introduced as a generalization of fuzzy, intuitionistic fuzzy, and crisp sets to overcome the ambiguity surrounding real-world problems. Truth-, falsity-, and indeterminacy-membership functions are used to express neutrosophic elements. This study was performed to examine a neutrosophic event-oriented algorithm for determining the critical path in activity-on-arc networks. The activity time estimates are presented as trapezoidal neutrosophic numbers, and score and accuracy functions are used to obtain a crisp model of the problem. An appropriate numerical example is then used to explain the proposed method.
AB - The critical path method is one of the oldest and most important techniques used for planning and scheduling projects. The main objective of project management science is to determine the critical path through a network representation of projects. The critical path through a network can be determined by many algorithms and is useful for managing, monitoring, and controlling the time and cost of an entire project. The essential problem in this case is that activity durations are uncertain; time presents considerable uncertainty because the time of an activity is not always easily or accurately estimated. This issue increases the need to use neutrosophic theory to solve the critical path problem. Real-world problems are characterized by a lack of precision, consistency, and completeness. The concept of neutrosophic sets has been introduced as a generalization of fuzzy, intuitionistic fuzzy, and crisp sets to overcome the ambiguity surrounding real-world problems. Truth-, falsity-, and indeterminacy-membership functions are used to express neutrosophic elements. This study was performed to examine a neutrosophic event-oriented algorithm for determining the critical path in activity-on-arc networks. The activity time estimates are presented as trapezoidal neutrosophic numbers, and score and accuracy functions are used to obtain a crisp model of the problem. An appropriate numerical example is then used to explain the proposed method.
KW - CPM
KW - Neutrosophic set theory
KW - Project life cycle
KW - Project management
KW - Project planning
KW - Project scheduling
KW - Trapezoidal neutrosophic number
UR - http://www.scopus.com/inward/record.url?scp=85114556159&partnerID=8YFLogxK
U2 - 10.32604/cmc.2022.018947
DO - 10.32604/cmc.2022.018947
M3 - Article
AN - SCOPUS:85114556159
SN - 1546-2218
VL - 70
SP - 1281
EP - 1296
JO - Computers, Materials and Continua
JF - Computers, Materials and Continua
IS - 1
ER -