TY - JOUR
T1 - Parameters identification of pv triple-diode model using improved generalized normal distribution algorithm
AU - Abdel-Basset, Mohamed
AU - Mohamed, Reda
AU - El-Fergany, Attia
AU - Abouhawwash, Mohamed
AU - Askar, S. S.
N1 - Funding Information:
Funding: This project is funded by King Saud University, Riyadh, Saudi Arabia.
Funding Information:
This project is funded by King Saud University, Riyadh, Saudi Arabia. Research Supporting Project number (RSP-2021/167), King Saud University, Riyadh, Saudi Arabia.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/5/1
Y1 - 2021/5/1
N2 - To simulate the behaviors of photovoltaic (PV) systems properly, the best values of the uncertain parameters of the PV models must be identified. Therefore, this paper proposes a novel optimization framework for estimating the parameters of the triple-diode model (TDM) of PV units with different technologies. The proposed methodology is based on the generalized normal distribution optimization (GNDO) with two novel strategies: (i) a premature convergence method (PCM), and (ii) a ranking-based updating method (RUM) to accelerate the convergence by utilizing each individual in the population as much as possible. This improved version of GNDO is called ranking-based generalized normal distribution optimization (RGNDO). RGNDO is experimentally investigated on three commercial PV modules (Kyocera KC200GT, Ultra 85-P and STP 6-120/36) and a solar unit (RTC Si solar cell France), and its extracted parameters are validated based on the measured dataset points extracted at generalized operating conditions. It can be reported here that the best scores of the objective function are equal to 0.750839 mA, 28.212810 mA, 2.417084 mA, and 13.798273 mA for RTC cell, KC200GT, Ultra 85-P, and STP 6-120/36; respectively. Additionally, the principal performance of this methodology is evaluated under various statistical tests and for convergence speed, and is compared with a number of the well-known recent state-of-the-art algorithms. RGNDO is shown to outperform the other algorithms in terms of all the statistical metrics as well as convergence speed. Finally, the performance of the RGNDO is validated in various operating conditions under varied temperatures and sun irradiance levels.
AB - To simulate the behaviors of photovoltaic (PV) systems properly, the best values of the uncertain parameters of the PV models must be identified. Therefore, this paper proposes a novel optimization framework for estimating the parameters of the triple-diode model (TDM) of PV units with different technologies. The proposed methodology is based on the generalized normal distribution optimization (GNDO) with two novel strategies: (i) a premature convergence method (PCM), and (ii) a ranking-based updating method (RUM) to accelerate the convergence by utilizing each individual in the population as much as possible. This improved version of GNDO is called ranking-based generalized normal distribution optimization (RGNDO). RGNDO is experimentally investigated on three commercial PV modules (Kyocera KC200GT, Ultra 85-P and STP 6-120/36) and a solar unit (RTC Si solar cell France), and its extracted parameters are validated based on the measured dataset points extracted at generalized operating conditions. It can be reported here that the best scores of the objective function are equal to 0.750839 mA, 28.212810 mA, 2.417084 mA, and 13.798273 mA for RTC cell, KC200GT, Ultra 85-P, and STP 6-120/36; respectively. Additionally, the principal performance of this methodology is evaluated under various statistical tests and for convergence speed, and is compared with a number of the well-known recent state-of-the-art algorithms. RGNDO is shown to outperform the other algorithms in terms of all the statistical metrics as well as convergence speed. Finally, the performance of the RGNDO is validated in various operating conditions under varied temperatures and sun irradiance levels.
KW - Optimization methods
KW - Parameter extraction
KW - Premature convergence
KW - PV triple-diode model
KW - Ranking method
KW - Renewable energy
UR - http://www.scopus.com/inward/record.url?scp=85105787001&partnerID=8YFLogxK
U2 - 10.3390/math9090995
DO - 10.3390/math9090995
M3 - Article
AN - SCOPUS:85105787001
SN - 2227-7390
VL - 9
SP - 1
EP - 23
JO - Mathematics
JF - Mathematics
IS - 9
M1 - 995
ER -