Performance of Prototype Pneumatic Boxing Gloves under Two Different Conditions of Target Padding

Paul PERKINS, Alex Jamieson, Wayne SPRATFORD, Allan HAHN

Research output: Contribution to journalArticle

2 Downloads (Pure)

Abstract

The impact damping capabilities of four different boxing gloves were assessed under two different conditions of target padding to determine whether target characteristics might influence previous conclusions concerning potential for impact mitigation through novel glove design. A conventional 10 oz glove (Std 10 oz), a conventional 16 oz glove (Std 16 oz), a prototype pneumatic glove with a sealed bladder (SBLI) and a prototype pneumatic glove with a bladder allowing air exchange with the external environment (ARLI) were each dropped three times on to a force plate from six heights ranging from 2.5 to 5.0 metres. The force plate was covered by a 50 mm thick mat of EVA material and results obtained were compared with those of an earlier experiment involving use of a similar protocol but a 25 mm thick EVA force plate covering. The thicker mat greatly reduced peak impact forces for all gloves, with values for the Std 10 oz glove becoming much closer to those reported by other researchers for punches delivered by elite boxers to crash test manikins. Peak rates of force development were also substantially decreased. Protective effects provided by the ARLI glove relative to the Std 10 oz glove were diminished but still in the order of 17% - 22% for peak impact force and 27% - 49% for peak rate of force development across the range of drop heights. With the 50 mm mat thickness, the SBLI glove was as effective as the ARLI glove in reducing peak impact force, whereas this was not the case with the 25 mm mat. It was, however, always inferior to the ARLI glove in decreasing peak rate of force development. The ability of the ARLI glove to afford protection across a spectrum of impact conditions could yield important practical advantages.
Original languageEnglish
Pages (from-to)603-624
Number of pages22
JournalWorld Journal of Engineering and Technology
Volume6
Issue number3
DOIs
Publication statusPublished - Aug 2018

Fingerprint

Pneumatics
Damping
Air
Experiments

Cite this

@article{f0935ef1cd274716acde72e6c593eb2b,
title = "Performance of Prototype Pneumatic Boxing Gloves under Two Different Conditions of Target Padding",
abstract = "The impact damping capabilities of four different boxing gloves were assessed under two different conditions of target padding to determine whether target characteristics might influence previous conclusions concerning potential for impact mitigation through novel glove design. A conventional 10 oz glove (Std 10 oz), a conventional 16 oz glove (Std 16 oz), a prototype pneumatic glove with a sealed bladder (SBLI) and a prototype pneumatic glove with a bladder allowing air exchange with the external environment (ARLI) were each dropped three times on to a force plate from six heights ranging from 2.5 to 5.0 metres. The force plate was covered by a 50 mm thick mat of EVA material and results obtained were compared with those of an earlier experiment involving use of a similar protocol but a 25 mm thick EVA force plate covering. The thicker mat greatly reduced peak impact forces for all gloves, with values for the Std 10 oz glove becoming much closer to those reported by other researchers for punches delivered by elite boxers to crash test manikins. Peak rates of force development were also substantially decreased. Protective effects provided by the ARLI glove relative to the Std 10 oz glove were diminished but still in the order of 17{\%} - 22{\%} for peak impact force and 27{\%} - 49{\%} for peak rate of force development across the range of drop heights. With the 50 mm mat thickness, the SBLI glove was as effective as the ARLI glove in reducing peak impact force, whereas this was not the case with the 25 mm mat. It was, however, always inferior to the ARLI glove in decreasing peak rate of force development. The ability of the ARLI glove to afford protection across a spectrum of impact conditions could yield important practical advantages.",
keywords = "Boxing Safety, Low-Impact Boxing Gloves, Modified Boxing, Protective Equipment for Boxing, Sport Technology, Sport Safety",
author = "Paul PERKINS and Alex Jamieson and Wayne SPRATFORD and Allan HAHN",
year = "2018",
month = "8",
doi = "10.4236/wjet.2018.63037",
language = "English",
volume = "6",
pages = "603--624",
journal = "World Journal of Engineering and Technology",
issn = "2331-4222",
number = "3",

}

Performance of Prototype Pneumatic Boxing Gloves under Two Different Conditions of Target Padding. / PERKINS, Paul; Jamieson, Alex; SPRATFORD, Wayne; HAHN, Allan.

In: World Journal of Engineering and Technology, Vol. 6, No. 3, 08.2018, p. 603-624.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Performance of Prototype Pneumatic Boxing Gloves under Two Different Conditions of Target Padding

AU - PERKINS, Paul

AU - Jamieson, Alex

AU - SPRATFORD, Wayne

AU - HAHN, Allan

PY - 2018/8

Y1 - 2018/8

N2 - The impact damping capabilities of four different boxing gloves were assessed under two different conditions of target padding to determine whether target characteristics might influence previous conclusions concerning potential for impact mitigation through novel glove design. A conventional 10 oz glove (Std 10 oz), a conventional 16 oz glove (Std 16 oz), a prototype pneumatic glove with a sealed bladder (SBLI) and a prototype pneumatic glove with a bladder allowing air exchange with the external environment (ARLI) were each dropped three times on to a force plate from six heights ranging from 2.5 to 5.0 metres. The force plate was covered by a 50 mm thick mat of EVA material and results obtained were compared with those of an earlier experiment involving use of a similar protocol but a 25 mm thick EVA force plate covering. The thicker mat greatly reduced peak impact forces for all gloves, with values for the Std 10 oz glove becoming much closer to those reported by other researchers for punches delivered by elite boxers to crash test manikins. Peak rates of force development were also substantially decreased. Protective effects provided by the ARLI glove relative to the Std 10 oz glove were diminished but still in the order of 17% - 22% for peak impact force and 27% - 49% for peak rate of force development across the range of drop heights. With the 50 mm mat thickness, the SBLI glove was as effective as the ARLI glove in reducing peak impact force, whereas this was not the case with the 25 mm mat. It was, however, always inferior to the ARLI glove in decreasing peak rate of force development. The ability of the ARLI glove to afford protection across a spectrum of impact conditions could yield important practical advantages.

AB - The impact damping capabilities of four different boxing gloves were assessed under two different conditions of target padding to determine whether target characteristics might influence previous conclusions concerning potential for impact mitigation through novel glove design. A conventional 10 oz glove (Std 10 oz), a conventional 16 oz glove (Std 16 oz), a prototype pneumatic glove with a sealed bladder (SBLI) and a prototype pneumatic glove with a bladder allowing air exchange with the external environment (ARLI) were each dropped three times on to a force plate from six heights ranging from 2.5 to 5.0 metres. The force plate was covered by a 50 mm thick mat of EVA material and results obtained were compared with those of an earlier experiment involving use of a similar protocol but a 25 mm thick EVA force plate covering. The thicker mat greatly reduced peak impact forces for all gloves, with values for the Std 10 oz glove becoming much closer to those reported by other researchers for punches delivered by elite boxers to crash test manikins. Peak rates of force development were also substantially decreased. Protective effects provided by the ARLI glove relative to the Std 10 oz glove were diminished but still in the order of 17% - 22% for peak impact force and 27% - 49% for peak rate of force development across the range of drop heights. With the 50 mm mat thickness, the SBLI glove was as effective as the ARLI glove in reducing peak impact force, whereas this was not the case with the 25 mm mat. It was, however, always inferior to the ARLI glove in decreasing peak rate of force development. The ability of the ARLI glove to afford protection across a spectrum of impact conditions could yield important practical advantages.

KW - Boxing Safety

KW - Low-Impact Boxing Gloves

KW - Modified Boxing

KW - Protective Equipment for Boxing

KW - Sport Technology

KW - Sport Safety

U2 - 10.4236/wjet.2018.63037

DO - 10.4236/wjet.2018.63037

M3 - Article

VL - 6

SP - 603

EP - 624

JO - World Journal of Engineering and Technology

JF - World Journal of Engineering and Technology

SN - 2331-4222

IS - 3

ER -