Polyandry and non-random fertilisation maintain long-term genetic diversity in an isolated island population of adders (Vipera berus)

Thomas Madsen, Beata Ujvari, Dirk Bauwens, Bernd Gruber, Arthur Georges, Marcel Klaassen

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Conservation genetic theory suggests that small and isolated populations should be subject to reduced genetic diversity i.e., heterozygosity and allelic diversity. Our 34 years study of an isolated island population of adders (Vipera berus) in southern Sweden challenges this notion. Despite a lack of gene flow and a yearly mean estimated reproductive adult population size of only 65 adult adders (range 12–171), the population maintains high levels of heterozygosity and allelic diversity similar to that observed in two mainland populations. Even a 14-year major “bottleneck” i.e., a reduction in adult adder numbers, encompassing at least four adder generations, did not result in any reduction in the island adders’ heterozygosity and allelic diversity. Female adders are polyandrous, and fertilisation is non-random, which our empirical data and modelling suggest are underpinning the maintenance of the population’s high level of heterozygosity. Our empirical results and subsequent modelling suggest that the positive genetic effects of polyandry in combination with non-random fertilisation, often overlooked in conservation genetic analyses, deserve greater consideration when predicting long-term survival of small and isolated populations.

Original languageEnglish
Pages (from-to)64-72
Number of pages9
JournalHeredity
Volume130
Issue number2
DOIs
Publication statusPublished - 6 Dec 2022

Fingerprint

Dive into the research topics of 'Polyandry and non-random fertilisation maintain long-term genetic diversity in an isolated island population of adders (Vipera berus)'. Together they form a unique fingerprint.

Cite this