Population dynamics of red-backed voles (Myodes) in North America

Rudy Boonstra

Research output: Contribution to journalReview article

50 Citations (Scopus)

Abstract

We review the population dynamics of red-backed voles (Myodes species) in North America, the main deciduous and coniferous forest-dwelling microtines on this continent, and compare and contrast their pattern with that of the same or similar species in Eurasia. We identify 7 long-term studies of population changes in Myodes in North America. Using autoregressive and spectral analysis, we found that only 2 of the 7 show 3- to 5-year cycles like those found in some Eurasian populations. There was no relationship between latitude and cycling. The general lack of cyclicity is associated with two key aspects of their demography that act in tandem: first, poor overwinter survival in most years; second, chronically low densities, with irregular outbreak years. Eight factors might explain why some Myodes populations fluctuate in cycles and others fluctuate irregularly, and we review the evidence for each factor: food supplies, nutrients, predation, interspecific competition, disease, weather, spacing behavior and interactive effects. Of these eight, only food supplies appear to be sufficient to explain the differences between cyclic and non-cyclic populations. Irregular fluctuations are the result of pulsed food supplies in the form of berry crops (M. rutilus) or tree seeds (M. gapperi) linked to weather patterns. We argue that, to understand the cause for the patterns in the respective hemispheres, we must know the mechanism(s) driving population change and this must be linked to rigorous field tests. We suggest that a large-scale, year-round feeding experiment should improve overwintering survival, increase standing densities, and flip non-cyclic Myodes populations into cyclic dynamics that would mimic the patterns seen in the cyclic populations found in parts of Eurasia.
Original languageEnglish
Pages (from-to)601-620
Number of pages20
JournalOecologia
Volume168
Issue number3
DOIs
Publication statusPublished - 2012
Externally publishedYes

Fingerprint

food supply
population dynamics
weather
cyclicity
overwintering
interspecific competition
coniferous forest
demography
deciduous forest
Eurasia
spectral analysis
spacing
predation
seed
crop
Rutilus
nutrient
seed trees
North America
voles

Cite this

Boonstra, Rudy. / Population dynamics of red-backed voles (Myodes) in North America. In: Oecologia. 2012 ; Vol. 168, No. 3. pp. 601-620.
@article{5a29599ff37946c48645d88095ed45a0,
title = "Population dynamics of red-backed voles (Myodes) in North America",
abstract = "We review the population dynamics of red-backed voles (Myodes species) in North America, the main deciduous and coniferous forest-dwelling microtines on this continent, and compare and contrast their pattern with that of the same or similar species in Eurasia. We identify 7 long-term studies of population changes in Myodes in North America. Using autoregressive and spectral analysis, we found that only 2 of the 7 show 3- to 5-year cycles like those found in some Eurasian populations. There was no relationship between latitude and cycling. The general lack of cyclicity is associated with two key aspects of their demography that act in tandem: first, poor overwinter survival in most years; second, chronically low densities, with irregular outbreak years. Eight factors might explain why some Myodes populations fluctuate in cycles and others fluctuate irregularly, and we review the evidence for each factor: food supplies, nutrients, predation, interspecific competition, disease, weather, spacing behavior and interactive effects. Of these eight, only food supplies appear to be sufficient to explain the differences between cyclic and non-cyclic populations. Irregular fluctuations are the result of pulsed food supplies in the form of berry crops (M. rutilus) or tree seeds (M. gapperi) linked to weather patterns. We argue that, to understand the cause for the patterns in the respective hemispheres, we must know the mechanism(s) driving population change and this must be linked to rigorous field tests. We suggest that a large-scale, year-round feeding experiment should improve overwintering survival, increase standing densities, and flip non-cyclic Myodes populations into cyclic dynamics that would mimic the patterns seen in the cyclic populations found in parts of Eurasia.",
keywords = "Population regulation, Population cycles, Myodes, Winter weather, Food shortage, Population, limitation",
author = "Rudy Boonstra",
year = "2012",
doi = "10.1007/s00442-011-2120-z",
language = "English",
volume = "168",
pages = "601--620",
journal = "Oecologia",
issn = "0029-8549",
publisher = "Springer Verlag",
number = "3",

}

Population dynamics of red-backed voles (Myodes) in North America. / Boonstra, Rudy.

In: Oecologia, Vol. 168, No. 3, 2012, p. 601-620.

Research output: Contribution to journalReview article

TY - JOUR

T1 - Population dynamics of red-backed voles (Myodes) in North America

AU - Boonstra, Rudy

PY - 2012

Y1 - 2012

N2 - We review the population dynamics of red-backed voles (Myodes species) in North America, the main deciduous and coniferous forest-dwelling microtines on this continent, and compare and contrast their pattern with that of the same or similar species in Eurasia. We identify 7 long-term studies of population changes in Myodes in North America. Using autoregressive and spectral analysis, we found that only 2 of the 7 show 3- to 5-year cycles like those found in some Eurasian populations. There was no relationship between latitude and cycling. The general lack of cyclicity is associated with two key aspects of their demography that act in tandem: first, poor overwinter survival in most years; second, chronically low densities, with irregular outbreak years. Eight factors might explain why some Myodes populations fluctuate in cycles and others fluctuate irregularly, and we review the evidence for each factor: food supplies, nutrients, predation, interspecific competition, disease, weather, spacing behavior and interactive effects. Of these eight, only food supplies appear to be sufficient to explain the differences between cyclic and non-cyclic populations. Irregular fluctuations are the result of pulsed food supplies in the form of berry crops (M. rutilus) or tree seeds (M. gapperi) linked to weather patterns. We argue that, to understand the cause for the patterns in the respective hemispheres, we must know the mechanism(s) driving population change and this must be linked to rigorous field tests. We suggest that a large-scale, year-round feeding experiment should improve overwintering survival, increase standing densities, and flip non-cyclic Myodes populations into cyclic dynamics that would mimic the patterns seen in the cyclic populations found in parts of Eurasia.

AB - We review the population dynamics of red-backed voles (Myodes species) in North America, the main deciduous and coniferous forest-dwelling microtines on this continent, and compare and contrast their pattern with that of the same or similar species in Eurasia. We identify 7 long-term studies of population changes in Myodes in North America. Using autoregressive and spectral analysis, we found that only 2 of the 7 show 3- to 5-year cycles like those found in some Eurasian populations. There was no relationship between latitude and cycling. The general lack of cyclicity is associated with two key aspects of their demography that act in tandem: first, poor overwinter survival in most years; second, chronically low densities, with irregular outbreak years. Eight factors might explain why some Myodes populations fluctuate in cycles and others fluctuate irregularly, and we review the evidence for each factor: food supplies, nutrients, predation, interspecific competition, disease, weather, spacing behavior and interactive effects. Of these eight, only food supplies appear to be sufficient to explain the differences between cyclic and non-cyclic populations. Irregular fluctuations are the result of pulsed food supplies in the form of berry crops (M. rutilus) or tree seeds (M. gapperi) linked to weather patterns. We argue that, to understand the cause for the patterns in the respective hemispheres, we must know the mechanism(s) driving population change and this must be linked to rigorous field tests. We suggest that a large-scale, year-round feeding experiment should improve overwintering survival, increase standing densities, and flip non-cyclic Myodes populations into cyclic dynamics that would mimic the patterns seen in the cyclic populations found in parts of Eurasia.

KW - Population regulation

KW - Population cycles

KW - Myodes

KW - Winter weather

KW - Food shortage

KW - Population

KW - limitation

U2 - 10.1007/s00442-011-2120-z

DO - 10.1007/s00442-011-2120-z

M3 - Review article

VL - 168

SP - 601

EP - 620

JO - Oecologia

JF - Oecologia

SN - 0029-8549

IS - 3

ER -