Predator traits determine food-web architecture across ecosystems

Ulrich Brose, Phillippe Archambault, Andrew D. Barnes, Louis Felix Bersier, Thomas Boy, João Canning-Clode, Erminia Conti, Marta Dias, Christoph Digel, Awantha Dissanayake, Augusto A.V. Flores, Katarina Fussmann, Benoit Gauzens, Clare Gray, Johanna Häussler, Myriam R. Hirt, Ute Jacob, Malte Jochum, Sonia Kéfi, Orla McLaughlin & 33 others Muriel M. MacPherson, Ellen Latz, Katrin Layer-Dobra, Pierre Legagneux, Yuanheng Li, Carolina Madeira, Neo D. Martinez, Vanessa Mendonça, Christian Mulder, Sergio A. Navarrete, Eoin J. O’Gorman, David Ott, José Paula, Daniel Perkins, Denise Piechnik, Ivan Pokrovsky, David Raffaelli, Björn C. Rall, Benjamin Rosenbaum, Remo Ryser, Ana Silva, Esra H. Sohlström, Natalia Sokolova, Murray S.A. Thompson, Ross M. Thompson, Fanny Vermandele, Catarina Vinagre, Shaopeng Wang, Jori M. Wefer, Richard J. Williams, Evie Wieters, Guy Woodward, Alison C. Iles

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Predator–prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator–prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator–prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.

Original languageEnglish
Pages (from-to)919-927
Number of pages9
JournalNature Ecology and Evolution
Volume3
Issue number6
DOIs
Publication statusPublished - Jun 2019

Fingerprint

food webs
food web
body mass
predator
predators
ecosystems
ecosystem
body size
natural foods
freshwater ecosystem
terrestrial ecosystem
marine ecosystem
vertebrate
flight
vertebrates
perturbation

Cite this

Brose, U., Archambault, P., Barnes, A. D., Bersier, L. F., Boy, T., Canning-Clode, J., ... Iles, A. C. (2019). Predator traits determine food-web architecture across ecosystems. Nature Ecology and Evolution, 3(6), 919-927. https://doi.org/10.1038/s41559-019-0899-x
Brose, Ulrich ; Archambault, Phillippe ; Barnes, Andrew D. ; Bersier, Louis Felix ; Boy, Thomas ; Canning-Clode, João ; Conti, Erminia ; Dias, Marta ; Digel, Christoph ; Dissanayake, Awantha ; Flores, Augusto A.V. ; Fussmann, Katarina ; Gauzens, Benoit ; Gray, Clare ; Häussler, Johanna ; Hirt, Myriam R. ; Jacob, Ute ; Jochum, Malte ; Kéfi, Sonia ; McLaughlin, Orla ; MacPherson, Muriel M. ; Latz, Ellen ; Layer-Dobra, Katrin ; Legagneux, Pierre ; Li, Yuanheng ; Madeira, Carolina ; Martinez, Neo D. ; Mendonça, Vanessa ; Mulder, Christian ; Navarrete, Sergio A. ; O’Gorman, Eoin J. ; Ott, David ; Paula, José ; Perkins, Daniel ; Piechnik, Denise ; Pokrovsky, Ivan ; Raffaelli, David ; Rall, Björn C. ; Rosenbaum, Benjamin ; Ryser, Remo ; Silva, Ana ; Sohlström, Esra H. ; Sokolova, Natalia ; Thompson, Murray S.A. ; Thompson, Ross M. ; Vermandele, Fanny ; Vinagre, Catarina ; Wang, Shaopeng ; Wefer, Jori M. ; Williams, Richard J. ; Wieters, Evie ; Woodward, Guy ; Iles, Alison C. / Predator traits determine food-web architecture across ecosystems. In: Nature Ecology and Evolution. 2019 ; Vol. 3, No. 6. pp. 919-927.
@article{b7bba4ae4c2b4dfe9cadfae2a55672e2,
title = "Predator traits determine food-web architecture across ecosystems",
abstract = "Predator–prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator–prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator–prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.",
keywords = "Ecology, food webs, predator loss, biodiversity, body size, allometry",
author = "Ulrich Brose and Phillippe Archambault and Barnes, {Andrew D.} and Bersier, {Louis Felix} and Thomas Boy and Jo{\~a}o Canning-Clode and Erminia Conti and Marta Dias and Christoph Digel and Awantha Dissanayake and Flores, {Augusto A.V.} and Katarina Fussmann and Benoit Gauzens and Clare Gray and Johanna H{\"a}ussler and Hirt, {Myriam R.} and Ute Jacob and Malte Jochum and Sonia K{\'e}fi and Orla McLaughlin and MacPherson, {Muriel M.} and Ellen Latz and Katrin Layer-Dobra and Pierre Legagneux and Yuanheng Li and Carolina Madeira and Martinez, {Neo D.} and Vanessa Mendon{\cc}a and Christian Mulder and Navarrete, {Sergio A.} and O’Gorman, {Eoin J.} and David Ott and Jos{\'e} Paula and Daniel Perkins and Denise Piechnik and Ivan Pokrovsky and David Raffaelli and Rall, {Bj{\"o}rn C.} and Benjamin Rosenbaum and Remo Ryser and Ana Silva and Sohlstr{\"o}m, {Esra H.} and Natalia Sokolova and Thompson, {Murray S.A.} and Thompson, {Ross M.} and Fanny Vermandele and Catarina Vinagre and Shaopeng Wang and Wefer, {Jori M.} and Williams, {Richard J.} and Evie Wieters and Guy Woodward and Iles, {Alison C.}",
year = "2019",
month = "6",
doi = "10.1038/s41559-019-0899-x",
language = "English",
volume = "3",
pages = "919--927",
journal = "Nature Ecology and Evolution",
issn = "2397-334X",
number = "6",

}

Brose, U, Archambault, P, Barnes, AD, Bersier, LF, Boy, T, Canning-Clode, J, Conti, E, Dias, M, Digel, C, Dissanayake, A, Flores, AAV, Fussmann, K, Gauzens, B, Gray, C, Häussler, J, Hirt, MR, Jacob, U, Jochum, M, Kéfi, S, McLaughlin, O, MacPherson, MM, Latz, E, Layer-Dobra, K, Legagneux, P, Li, Y, Madeira, C, Martinez, ND, Mendonça, V, Mulder, C, Navarrete, SA, O’Gorman, EJ, Ott, D, Paula, J, Perkins, D, Piechnik, D, Pokrovsky, I, Raffaelli, D, Rall, BC, Rosenbaum, B, Ryser, R, Silva, A, Sohlström, EH, Sokolova, N, Thompson, MSA, Thompson, RM, Vermandele, F, Vinagre, C, Wang, S, Wefer, JM, Williams, RJ, Wieters, E, Woodward, G & Iles, AC 2019, 'Predator traits determine food-web architecture across ecosystems', Nature Ecology and Evolution, vol. 3, no. 6, pp. 919-927. https://doi.org/10.1038/s41559-019-0899-x

Predator traits determine food-web architecture across ecosystems. / Brose, Ulrich; Archambault, Phillippe; Barnes, Andrew D.; Bersier, Louis Felix; Boy, Thomas; Canning-Clode, João; Conti, Erminia; Dias, Marta; Digel, Christoph; Dissanayake, Awantha; Flores, Augusto A.V.; Fussmann, Katarina; Gauzens, Benoit; Gray, Clare; Häussler, Johanna; Hirt, Myriam R.; Jacob, Ute; Jochum, Malte; Kéfi, Sonia; McLaughlin, Orla; MacPherson, Muriel M.; Latz, Ellen; Layer-Dobra, Katrin; Legagneux, Pierre; Li, Yuanheng; Madeira, Carolina; Martinez, Neo D.; Mendonça, Vanessa; Mulder, Christian; Navarrete, Sergio A.; O’Gorman, Eoin J.; Ott, David; Paula, José; Perkins, Daniel; Piechnik, Denise; Pokrovsky, Ivan; Raffaelli, David; Rall, Björn C.; Rosenbaum, Benjamin; Ryser, Remo; Silva, Ana; Sohlström, Esra H.; Sokolova, Natalia; Thompson, Murray S.A.; Thompson, Ross M.; Vermandele, Fanny; Vinagre, Catarina; Wang, Shaopeng; Wefer, Jori M.; Williams, Richard J.; Wieters, Evie; Woodward, Guy; Iles, Alison C.

In: Nature Ecology and Evolution, Vol. 3, No. 6, 06.2019, p. 919-927.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Predator traits determine food-web architecture across ecosystems

AU - Brose, Ulrich

AU - Archambault, Phillippe

AU - Barnes, Andrew D.

AU - Bersier, Louis Felix

AU - Boy, Thomas

AU - Canning-Clode, João

AU - Conti, Erminia

AU - Dias, Marta

AU - Digel, Christoph

AU - Dissanayake, Awantha

AU - Flores, Augusto A.V.

AU - Fussmann, Katarina

AU - Gauzens, Benoit

AU - Gray, Clare

AU - Häussler, Johanna

AU - Hirt, Myriam R.

AU - Jacob, Ute

AU - Jochum, Malte

AU - Kéfi, Sonia

AU - McLaughlin, Orla

AU - MacPherson, Muriel M.

AU - Latz, Ellen

AU - Layer-Dobra, Katrin

AU - Legagneux, Pierre

AU - Li, Yuanheng

AU - Madeira, Carolina

AU - Martinez, Neo D.

AU - Mendonça, Vanessa

AU - Mulder, Christian

AU - Navarrete, Sergio A.

AU - O’Gorman, Eoin J.

AU - Ott, David

AU - Paula, José

AU - Perkins, Daniel

AU - Piechnik, Denise

AU - Pokrovsky, Ivan

AU - Raffaelli, David

AU - Rall, Björn C.

AU - Rosenbaum, Benjamin

AU - Ryser, Remo

AU - Silva, Ana

AU - Sohlström, Esra H.

AU - Sokolova, Natalia

AU - Thompson, Murray S.A.

AU - Thompson, Ross M.

AU - Vermandele, Fanny

AU - Vinagre, Catarina

AU - Wang, Shaopeng

AU - Wefer, Jori M.

AU - Williams, Richard J.

AU - Wieters, Evie

AU - Woodward, Guy

AU - Iles, Alison C.

PY - 2019/6

Y1 - 2019/6

N2 - Predator–prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator–prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator–prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.

AB - Predator–prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator–prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator–prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.

KW - Ecology

KW - food webs

KW - predator loss

KW - biodiversity

KW - body size

KW - allometry

UR - http://www.scopus.com/inward/record.url?scp=85066086552&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/predator-traits-determine-foodweb-architecture-across-ecosystems

U2 - 10.1038/s41559-019-0899-x

DO - 10.1038/s41559-019-0899-x

M3 - Article

VL - 3

SP - 919

EP - 927

JO - Nature Ecology and Evolution

JF - Nature Ecology and Evolution

SN - 2397-334X

IS - 6

ER -

Brose U, Archambault P, Barnes AD, Bersier LF, Boy T, Canning-Clode J et al. Predator traits determine food-web architecture across ecosystems. Nature Ecology and Evolution. 2019 Jun;3(6):919-927. https://doi.org/10.1038/s41559-019-0899-x