TY - JOUR
T1 - Preliminary evaluation of a next-generation portable gas chromatograph mass spectrometer (GC-MS) for the on-site analysis of ignitable liquid residues
AU - VISOTIN, Alexander
AU - LENNARD, Chris
PY - 2016
Y1 - 2016
N2 - The detection of ignitable liquid residues (ILRs) at a fire scene can be valuable evidence to indicate if the fire may have been deliberately set. In this study, a commercially-available portable GC-MS, the TRIDION-9, was evaluated for the purpose of on-site fire debris analysis. The instrument, which incorporates a low thermal mass capillary GC and a miniaturised toroidal ion trap mass spectrometer, is designed to use solid-phase microextraction (SPME) as the default sampling method. Four ignitable liquids (petrol, mineral turpentine, kerosene and diesel) and seven substrates (nylon, polypropylene and wool carpet, rubber and foam underlay, untreated pine and polyurethane) were considered. After method optimisation, substrates were burned and spiked with 0.1 µL of ignitable liquid (mineral turpentine, kerosene, diesel fuel, and both neat and weathered unleaded petrol). Sampling was performed via passive headspace SPME adsorption over 3 min immediately followed by analysis using the TRIDION-9 (analysis time <2 min). Field trials were performed on fire debris samples collected from an accelerated structural fire. The data from the portable GC-MS analyses permitted the detection and correct classification of ILRs in the majority of samples analysed. Overall, the TRIDION-9 was found to be well-suited to the field-based analysis of fire debris samples as a preliminary screen to provide rapid presumptive results for fire investigators.
AB - The detection of ignitable liquid residues (ILRs) at a fire scene can be valuable evidence to indicate if the fire may have been deliberately set. In this study, a commercially-available portable GC-MS, the TRIDION-9, was evaluated for the purpose of on-site fire debris analysis. The instrument, which incorporates a low thermal mass capillary GC and a miniaturised toroidal ion trap mass spectrometer, is designed to use solid-phase microextraction (SPME) as the default sampling method. Four ignitable liquids (petrol, mineral turpentine, kerosene and diesel) and seven substrates (nylon, polypropylene and wool carpet, rubber and foam underlay, untreated pine and polyurethane) were considered. After method optimisation, substrates were burned and spiked with 0.1 µL of ignitable liquid (mineral turpentine, kerosene, diesel fuel, and both neat and weathered unleaded petrol). Sampling was performed via passive headspace SPME adsorption over 3 min immediately followed by analysis using the TRIDION-9 (analysis time <2 min). Field trials were performed on fire debris samples collected from an accelerated structural fire. The data from the portable GC-MS analyses permitted the detection and correct classification of ILRs in the majority of samples analysed. Overall, the TRIDION-9 was found to be well-suited to the field-based analysis of fire debris samples as a preliminary screen to provide rapid presumptive results for fire investigators.
KW - accelerants
KW - arson
KW - fire investigation
KW - hydrocarbons
KW - portable instrumentation
KW - presumptive screening
UR - http://www.scopus.com/inward/record.url?scp=84959106544&partnerID=8YFLogxK
U2 - 10.1080/00450618.2015.1045554
DO - 10.1080/00450618.2015.1045554
M3 - Article
SN - 0045-0618
VL - 48
SP - 203
EP - 221
JO - Australian Journal of Forensic Sciences
JF - Australian Journal of Forensic Sciences
IS - 2
ER -