Proprioceptive ability at the lips and jaw measured using the same psychophysical discrimination task

Ellie Frayne, Roger Adams, Glen Croxson, Gordon WADDINGTON

    Research output: Contribution to journalArticle

    9 Citations (Scopus)

    Abstract

    In the human face, the muscles and joints that generate movement have different properties. Whereas the jaw is a conventional condyle joint, the facial musculature has neither distinct origin nor insertion points, and the muscles do not contain muscle spindle proprioceptors. This current study aims to compare the proprioceptive ability at the orofacial muscles with that of the temporomandibular joint (TMJ) in 21 neuro-typical people aged between 18 and 65 years. A novel psychophysical task was devised for use with both structures that involved a fixed 30.5 mm start separation followed by closure onto stimuli of 5, 6, 7, 8 mm diameter. The mean proprioceptive score when using the lips was 0.84 compared to 0.79 at the jaw (p <0.001), and response error was lower by 0.1 mm. The greater accuracy in discrimination of lip movement is significant because, unlike the muscles controlling the TMJ, the orbicularis oris muscle controlling the lips inserts on to connective tissue and other muscle, and contains no muscle spindles, implying a different more effective, proprioceptive mechanism. Additionally, unlike the lack of correlation previously observed between joints in the upper and lower limbs, at the face the scores from performing the task with the two different structures were significantly correlated (r = 0.5, p = 0.018). These data extend the understanding of proprioception being correlated for the same left and right joints and correlated within the same structure (e.g. ankle dorsiflexion and inversion), to include use-dependant proprioception, with performance in different structures being correlated through extended coordinated use. At the lips and jaw, it is likely that this arises from extensive coordinated use. This informs clinical assessment and suggests a potential for coordinated post-injury training of the lips and jaw, as well as having the potential to predict premorbid function via measurement of the uninjured structure, when monitoring progress and setting clinical rehabilitation goals.
    Original languageEnglish
    Pages (from-to)1679-1687
    Number of pages9
    JournalExperimental Brain Research
    Volume234
    Issue number6
    DOIs
    Publication statusPublished - 2016

    Fingerprint

    Aptitude
    Lip
    Jaw
    Muscles
    Joints
    Muscle Spindles
    Proprioception
    Temporomandibular Joint
    Ankle
    Connective Tissue
    Lower Extremity
    Rehabilitation
    Bone and Bones
    Wounds and Injuries

    Cite this

    @article{2608e4909e304b55b3d72b73be51096a,
    title = "Proprioceptive ability at the lips and jaw measured using the same psychophysical discrimination task",
    abstract = "In the human face, the muscles and joints that generate movement have different properties. Whereas the jaw is a conventional condyle joint, the facial musculature has neither distinct origin nor insertion points, and the muscles do not contain muscle spindle proprioceptors. This current study aims to compare the proprioceptive ability at the orofacial muscles with that of the temporomandibular joint (TMJ) in 21 neuro-typical people aged between 18 and 65 years. A novel psychophysical task was devised for use with both structures that involved a fixed 30.5 mm start separation followed by closure onto stimuli of 5, 6, 7, 8 mm diameter. The mean proprioceptive score when using the lips was 0.84 compared to 0.79 at the jaw (p <0.001), and response error was lower by 0.1 mm. The greater accuracy in discrimination of lip movement is significant because, unlike the muscles controlling the TMJ, the orbicularis oris muscle controlling the lips inserts on to connective tissue and other muscle, and contains no muscle spindles, implying a different more effective, proprioceptive mechanism. Additionally, unlike the lack of correlation previously observed between joints in the upper and lower limbs, at the face the scores from performing the task with the two different structures were significantly correlated (r = 0.5, p = 0.018). These data extend the understanding of proprioception being correlated for the same left and right joints and correlated within the same structure (e.g. ankle dorsiflexion and inversion), to include use-dependant proprioception, with performance in different structures being correlated through extended coordinated use. At the lips and jaw, it is likely that this arises from extensive coordinated use. This informs clinical assessment and suggests a potential for coordinated post-injury training of the lips and jaw, as well as having the potential to predict premorbid function via measurement of the uninjured structure, when monitoring progress and setting clinical rehabilitation goals.",
    author = "Ellie Frayne and Roger Adams and Glen Croxson and Gordon WADDINGTON",
    year = "2016",
    doi = "10.1007/s00221-016-4573-0",
    language = "English",
    volume = "234",
    pages = "1679--1687",
    journal = "Experimental Brain Research",
    issn = "0014-4819",
    publisher = "Springer Verlag",
    number = "6",

    }

    Proprioceptive ability at the lips and jaw measured using the same psychophysical discrimination task. / Frayne, Ellie; Adams, Roger; Croxson, Glen; WADDINGTON, Gordon.

    In: Experimental Brain Research, Vol. 234, No. 6, 2016, p. 1679-1687.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Proprioceptive ability at the lips and jaw measured using the same psychophysical discrimination task

    AU - Frayne, Ellie

    AU - Adams, Roger

    AU - Croxson, Glen

    AU - WADDINGTON, Gordon

    PY - 2016

    Y1 - 2016

    N2 - In the human face, the muscles and joints that generate movement have different properties. Whereas the jaw is a conventional condyle joint, the facial musculature has neither distinct origin nor insertion points, and the muscles do not contain muscle spindle proprioceptors. This current study aims to compare the proprioceptive ability at the orofacial muscles with that of the temporomandibular joint (TMJ) in 21 neuro-typical people aged between 18 and 65 years. A novel psychophysical task was devised for use with both structures that involved a fixed 30.5 mm start separation followed by closure onto stimuli of 5, 6, 7, 8 mm diameter. The mean proprioceptive score when using the lips was 0.84 compared to 0.79 at the jaw (p <0.001), and response error was lower by 0.1 mm. The greater accuracy in discrimination of lip movement is significant because, unlike the muscles controlling the TMJ, the orbicularis oris muscle controlling the lips inserts on to connective tissue and other muscle, and contains no muscle spindles, implying a different more effective, proprioceptive mechanism. Additionally, unlike the lack of correlation previously observed between joints in the upper and lower limbs, at the face the scores from performing the task with the two different structures were significantly correlated (r = 0.5, p = 0.018). These data extend the understanding of proprioception being correlated for the same left and right joints and correlated within the same structure (e.g. ankle dorsiflexion and inversion), to include use-dependant proprioception, with performance in different structures being correlated through extended coordinated use. At the lips and jaw, it is likely that this arises from extensive coordinated use. This informs clinical assessment and suggests a potential for coordinated post-injury training of the lips and jaw, as well as having the potential to predict premorbid function via measurement of the uninjured structure, when monitoring progress and setting clinical rehabilitation goals.

    AB - In the human face, the muscles and joints that generate movement have different properties. Whereas the jaw is a conventional condyle joint, the facial musculature has neither distinct origin nor insertion points, and the muscles do not contain muscle spindle proprioceptors. This current study aims to compare the proprioceptive ability at the orofacial muscles with that of the temporomandibular joint (TMJ) in 21 neuro-typical people aged between 18 and 65 years. A novel psychophysical task was devised for use with both structures that involved a fixed 30.5 mm start separation followed by closure onto stimuli of 5, 6, 7, 8 mm diameter. The mean proprioceptive score when using the lips was 0.84 compared to 0.79 at the jaw (p <0.001), and response error was lower by 0.1 mm. The greater accuracy in discrimination of lip movement is significant because, unlike the muscles controlling the TMJ, the orbicularis oris muscle controlling the lips inserts on to connective tissue and other muscle, and contains no muscle spindles, implying a different more effective, proprioceptive mechanism. Additionally, unlike the lack of correlation previously observed between joints in the upper and lower limbs, at the face the scores from performing the task with the two different structures were significantly correlated (r = 0.5, p = 0.018). These data extend the understanding of proprioception being correlated for the same left and right joints and correlated within the same structure (e.g. ankle dorsiflexion and inversion), to include use-dependant proprioception, with performance in different structures being correlated through extended coordinated use. At the lips and jaw, it is likely that this arises from extensive coordinated use. This informs clinical assessment and suggests a potential for coordinated post-injury training of the lips and jaw, as well as having the potential to predict premorbid function via measurement of the uninjured structure, when monitoring progress and setting clinical rehabilitation goals.

    U2 - 10.1007/s00221-016-4573-0

    DO - 10.1007/s00221-016-4573-0

    M3 - Article

    VL - 234

    SP - 1679

    EP - 1687

    JO - Experimental Brain Research

    JF - Experimental Brain Research

    SN - 0014-4819

    IS - 6

    ER -