TY - JOUR
T1 - Proprioceptive acuity into knee hypermobile range in children with Joint Hypermobility Syndrome
AU - Pacey, Verity
AU - Adams, Roger D.
AU - Tofts, Louise
AU - Munns, Craig F.
AU - Nicholson, Leslie L.
PY - 2014/9/8
Y1 - 2014/9/8
N2 - Background: Children with Joint Hypermobility Syndrome (JHS) have reduced knee joint proprioceptive acuity compared to peers. Altered proprioception at end of range in individuals with JHS is hypothesised to contribute to recurrent joint injuries and instability. This study aims to provide the first objective comparison of functional knee joint proprioceptive acuity in hyperextension range compared to early flexion range in children with JHS.Methods: Active, weight-bearing knee joint proprioceptive acuity in both hyperextension and early flexion range was tested with a purpose-built device. Proprioceptive acuity was measured using the psychophysical method of constant stimuli to determine ability to discriminate between the extents of paired active movements made to physical stops. The smallest difference in knee range of motion that the child is able to correctly judge on at least 75% of occasions, the Just Noticeable Difference (JND), was calculated using Probit analysis. Knee pain, muscle strength, amount of physical activity and patient demographic data were collected.Results: Twenty children aged 8-16 years with JHS and hypermobile knees participated. Eleven children demonstrated better proprioceptive acuity in flexion, and 9 in hyperextension (z = 0.45, p = 0.63). Matched pairs t-test found no significant difference in children's ability to discriminate between the same extents of movement in the hyperextension or flexion directions (mean JND difference 0.11°, 95% CI -0.26° - 0.47°, p = 0.545). However, 3 children could not discriminate movements in hyperextension better than chance. Proprioceptive acuity scores were positively correlated between the two directions of movement (r = 0.55, p = 0.02), with no significant correlations found between proprioceptive acuity and age, degree of hypermobility, muscle strength, pain level, amount of physical activity or body mass index centile (r = -0.35 to -0.03, all p ≥ 0.13).Conclusion: For a group of children with JHS involving hypermobile knees, there was no significant difference between knee joint proprioceptive acuity in early flexion and in hypermobile range when measured by a functional, active, weight-bearing test. Therefore, when implementing a proprioceptive training programme, clinicians should focus training throughout knee range, including into hyperextension. Further research is needed to determine factors contributing to pain and instability in hypermobile range.
AB - Background: Children with Joint Hypermobility Syndrome (JHS) have reduced knee joint proprioceptive acuity compared to peers. Altered proprioception at end of range in individuals with JHS is hypothesised to contribute to recurrent joint injuries and instability. This study aims to provide the first objective comparison of functional knee joint proprioceptive acuity in hyperextension range compared to early flexion range in children with JHS.Methods: Active, weight-bearing knee joint proprioceptive acuity in both hyperextension and early flexion range was tested with a purpose-built device. Proprioceptive acuity was measured using the psychophysical method of constant stimuli to determine ability to discriminate between the extents of paired active movements made to physical stops. The smallest difference in knee range of motion that the child is able to correctly judge on at least 75% of occasions, the Just Noticeable Difference (JND), was calculated using Probit analysis. Knee pain, muscle strength, amount of physical activity and patient demographic data were collected.Results: Twenty children aged 8-16 years with JHS and hypermobile knees participated. Eleven children demonstrated better proprioceptive acuity in flexion, and 9 in hyperextension (z = 0.45, p = 0.63). Matched pairs t-test found no significant difference in children's ability to discriminate between the same extents of movement in the hyperextension or flexion directions (mean JND difference 0.11°, 95% CI -0.26° - 0.47°, p = 0.545). However, 3 children could not discriminate movements in hyperextension better than chance. Proprioceptive acuity scores were positively correlated between the two directions of movement (r = 0.55, p = 0.02), with no significant correlations found between proprioceptive acuity and age, degree of hypermobility, muscle strength, pain level, amount of physical activity or body mass index centile (r = -0.35 to -0.03, all p ≥ 0.13).Conclusion: For a group of children with JHS involving hypermobile knees, there was no significant difference between knee joint proprioceptive acuity in early flexion and in hypermobile range when measured by a functional, active, weight-bearing test. Therefore, when implementing a proprioceptive training programme, clinicians should focus training throughout knee range, including into hyperextension. Further research is needed to determine factors contributing to pain and instability in hypermobile range.
KW - Ehlers-Danlos syndrome
KW - Hyperextension
KW - Hypermobility
KW - Joint hypermobility syndrome
KW - Knee
KW - Proprioception
KW - Range of motion
UR - http://www.scopus.com/inward/record.url?scp=84908139251&partnerID=8YFLogxK
U2 - 10.1186/1546-0096-12-40
DO - 10.1186/1546-0096-12-40
M3 - Article
C2 - 25278815
AN - SCOPUS:84908139251
SN - 1546-0096
VL - 12
SP - 1
EP - 7
JO - Pediatric Rheumatology
JF - Pediatric Rheumatology
M1 - 40
ER -