TY - JOUR
T1 - Proteolytic cleavage analysis at the Murray Valley encephalitis virus NS1-2A junction
AU - Addis, S
AU - LEE, Eva
AU - Bettadapura, J
AU - Lobigs, Mario
N1 - Funding Information:
SNK performed all of the experiments and analysed the data. JB helps in the initial preparation of the wt NS1-2A expression plasmid. EL and ML carried out the construction of full-length wt MVEV infectious clone. SNK and ML prepared the initial draft of the manuscript, and EL and JB revised the manuscript. ML supported the work with National Health & Medical Research Council of Australia research grant. All authors read and approved the final draft of the manuscript.
Publisher Copyright:
© 2015 Addis et al.
PY - 2015
Y1 - 2015
N2 - Background: Our understanding of the proteolytic processing events at the NS1-2A junction in the flavivirus polyprotein has not markedly progressed since the early work conducted on dengue virus (DENV). This work identified an octapeptide sequence located immediately upstream of the cleavage site thought to be important in substrate recognition by an as yet unknown, endoplasmic reticulum-resident host protease. Of the eight amino acid recognition sequence, the highly conserved residues at positions P1, P3, P5, P7 and P8 (with respect to N-terminus of NS2A) are particularly sensitive to amino acid substitutions in terms of DENV NS1-NS2A cleavage efficiency; however, the role of the octapeptide in efficient NS1 and NS2A production of other flaviviruses has not been experimentally addressed. Methods and Results: Using site-directed mutagenesis at the NS1-2A cleavage site of Murray Valley encephalitis virus (MVEV), we confirmed the dominant role of conserved octapeptide residues for efficient NS1-2A cleavage, while changes at variable and the P1' residues were mostly tolerated. However, digressions from the consensus cleavage motif derived from studies on DENV were also found. Thus, comparison of the impact on cleavage of mutations at the NS1-2A junction of MVEV and DENV showed virus-specific differences at both conserved and variable residues. Conclusion: We show, with subgenomic expression and infectious clone-derived mutants of MVEV that conserved residues in the flavivirus octapeptide motif can be replaced with a different amino acid without markedly reducing cleavage efficiency of NS1 and NS2A.
AB - Background: Our understanding of the proteolytic processing events at the NS1-2A junction in the flavivirus polyprotein has not markedly progressed since the early work conducted on dengue virus (DENV). This work identified an octapeptide sequence located immediately upstream of the cleavage site thought to be important in substrate recognition by an as yet unknown, endoplasmic reticulum-resident host protease. Of the eight amino acid recognition sequence, the highly conserved residues at positions P1, P3, P5, P7 and P8 (with respect to N-terminus of NS2A) are particularly sensitive to amino acid substitutions in terms of DENV NS1-NS2A cleavage efficiency; however, the role of the octapeptide in efficient NS1 and NS2A production of other flaviviruses has not been experimentally addressed. Methods and Results: Using site-directed mutagenesis at the NS1-2A cleavage site of Murray Valley encephalitis virus (MVEV), we confirmed the dominant role of conserved octapeptide residues for efficient NS1-2A cleavage, while changes at variable and the P1' residues were mostly tolerated. However, digressions from the consensus cleavage motif derived from studies on DENV were also found. Thus, comparison of the impact on cleavage of mutations at the NS1-2A junction of MVEV and DENV showed virus-specific differences at both conserved and variable residues. Conclusion: We show, with subgenomic expression and infectious clone-derived mutants of MVEV that conserved residues in the flavivirus octapeptide motif can be replaced with a different amino acid without markedly reducing cleavage efficiency of NS1 and NS2A.
KW - DNA Mutational Analysis
KW - Dengue Virus/physiology
KW - Encephalitis Virus, Murray Valley/genetics
KW - Mutagenesis, Site-Directed
KW - Polyproteins/genetics
KW - Protein Processing, Post-Translational
KW - Viral Proteins/genetics
UR - http://www.scopus.com/inward/record.url?scp=84941626851&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/proteolytic-cleavage-analysis-murray-valley-encephalitis-virus-ns12a-junction
U2 - 10.1186/s12985-015-0375-4
DO - 10.1186/s12985-015-0375-4
M3 - Article
SN - 1743-422X
VL - 12
SP - 1
EP - 11
JO - Virology Journal
JF - Virology Journal
M1 - 144
ER -