Abstract
The accumulation of amyloid-beta (Aβ) peptides is believed to be a central contributor to the neurodegeneration typically seen in Alzheimer's disease (AD) brain. Aβ extracted from AD brains invariably possesses extensive truncations, yielding peptides of differing N- and C-terminal composition. Whilst Aβ is often abundant in the brains of cognitively normal elderly people, the brains of AD patients are highly enriched for N-terminally truncated Aβ bearing the pyroglutamate modification. Pyroglutamate-Aβ (pE-Aβ) has a higher propensity for oligomerisation and aggregation than full-length Aβ, potentially seeding the accumulation of neurotoxic Aβ oligomers and amyloid deposits. In addition, pE-Aβ has increased resistance to clearance by peptidases, causing these peptides to persist in biological fluids and tissues. The extensive deposition of pE-Aβ in human AD brain is under-represented in many transgenic mouse models of AD, reflecting major differences in the production and processing of Aβ peptides in these models compared to the human disease state.
Original language | English |
---|---|
Pages (from-to) | 1915-1918 |
Number of pages | 4 |
Journal | International Journal of Biochemistry and Cell Biology |
Volume | 42 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2010 |
Externally published | Yes |