River condition assessment may depend on the sub-sampling method: field live-sort versus laboratory sub-sampling of invertebrates for bioassessment

Susan Nichols, Richard Norris

    Research output: Contribution to journalArticle

    17 Citations (Scopus)

    Abstract

    Aquatic macroinvertebrates are commonly used biological indicators for assessing the health of freshwater ecosystems. However, counting all the invertebrates in the large samples that are usually collected for rapid site assessment is time-consuming and costly. Therefore, sub-sampling is often done with fixed time or fixed count live-sorting in the field or with preserved material using sample splitters in the laboratory. We investigate the differences between site assessments provided when the two sub-sampling approaches (Live-sort and Lab-sort) were used in conjunction with predictive bioassessment models. The samples showed a method bias. The Live-sort sub-samples tended to have more large, conspicuous invertebrates and often fewer small and, or cryptic animals that were more likely to be found in Lab-sort samples where a microscope was used. The Live-sort method recovered 4–6 more taxa than Lab-sorting in spring, but not in autumn. The magnitude of the significant differences between Live-sort and Lab-sort predictive model outputs, observed to expected (O/E) taxa scores, for the same sites ranged from 0.12 to 0.53. These differences in the methods resulted in different assessments of some sites only and the number of sites that were assessed differently depended on the season, with spring samples showing most disparity. The samples may differ most in spring because many of the invertebrates are larger at that time (and thus are more conspicuous targets for live-sorters). The Live-sort data cannot be run through a predictive model created from Lab-sort data (and vice versa) because of the taxonomic differences in sub-sample composition and the sub-sampling methods must be standardized within and among studies if biological assessment is to provide valid comparisons of site condition. Assessments that rely on the Live-sorting method may indicate that sites are ‘less impaired’ in spring compared to autumn because more taxa are retrieved in spring when they are larger and more visible. Laboratory sub-sampling may return fewer taxa in spring, which may affect assessments relying on taxonomic richness
    Original languageEnglish
    Pages (from-to)195-213
    Number of pages19
    JournalHydrobiologia: the international journal on limnology and marine sciences
    Volume572
    Issue number1
    DOIs
    Publication statusPublished - 2006

    Fingerprint

    biological assessment
    field method
    invertebrate
    invertebrates
    rivers
    sorting
    sampling
    river
    autumn
    methodology
    freshwater ecosystem
    bioindicator
    macroinvertebrate
    method
    laboratory
    animal
    aquatic invertebrates
    microscopes

    Cite this

    @article{6ae3959a261745fdb718611868aeb12a,
    title = "River condition assessment may depend on the sub-sampling method: field live-sort versus laboratory sub-sampling of invertebrates for bioassessment",
    abstract = "Aquatic macroinvertebrates are commonly used biological indicators for assessing the health of freshwater ecosystems. However, counting all the invertebrates in the large samples that are usually collected for rapid site assessment is time-consuming and costly. Therefore, sub-sampling is often done with fixed time or fixed count live-sorting in the field or with preserved material using sample splitters in the laboratory. We investigate the differences between site assessments provided when the two sub-sampling approaches (Live-sort and Lab-sort) were used in conjunction with predictive bioassessment models. The samples showed a method bias. The Live-sort sub-samples tended to have more large, conspicuous invertebrates and often fewer small and, or cryptic animals that were more likely to be found in Lab-sort samples where a microscope was used. The Live-sort method recovered 4–6 more taxa than Lab-sorting in spring, but not in autumn. The magnitude of the significant differences between Live-sort and Lab-sort predictive model outputs, observed to expected (O/E) taxa scores, for the same sites ranged from 0.12 to 0.53. These differences in the methods resulted in different assessments of some sites only and the number of sites that were assessed differently depended on the season, with spring samples showing most disparity. The samples may differ most in spring because many of the invertebrates are larger at that time (and thus are more conspicuous targets for live-sorters). The Live-sort data cannot be run through a predictive model created from Lab-sort data (and vice versa) because of the taxonomic differences in sub-sample composition and the sub-sampling methods must be standardized within and among studies if biological assessment is to provide valid comparisons of site condition. Assessments that rely on the Live-sorting method may indicate that sites are ‘less impaired’ in spring compared to autumn because more taxa are retrieved in spring when they are larger and more visible. Laboratory sub-sampling may return fewer taxa in spring, which may affect assessments relying on taxonomic richness",
    author = "Susan Nichols and Richard Norris",
    year = "2006",
    doi = "10.1007/s10750-006-0253-6",
    language = "English",
    volume = "572",
    pages = "195--213",
    journal = "Hydrobiologia",
    issn = "0018-8158",
    publisher = "Springer",
    number = "1",

    }

    TY - JOUR

    T1 - River condition assessment may depend on the sub-sampling method: field live-sort versus laboratory sub-sampling of invertebrates for bioassessment

    AU - Nichols, Susan

    AU - Norris, Richard

    PY - 2006

    Y1 - 2006

    N2 - Aquatic macroinvertebrates are commonly used biological indicators for assessing the health of freshwater ecosystems. However, counting all the invertebrates in the large samples that are usually collected for rapid site assessment is time-consuming and costly. Therefore, sub-sampling is often done with fixed time or fixed count live-sorting in the field or with preserved material using sample splitters in the laboratory. We investigate the differences between site assessments provided when the two sub-sampling approaches (Live-sort and Lab-sort) were used in conjunction with predictive bioassessment models. The samples showed a method bias. The Live-sort sub-samples tended to have more large, conspicuous invertebrates and often fewer small and, or cryptic animals that were more likely to be found in Lab-sort samples where a microscope was used. The Live-sort method recovered 4–6 more taxa than Lab-sorting in spring, but not in autumn. The magnitude of the significant differences between Live-sort and Lab-sort predictive model outputs, observed to expected (O/E) taxa scores, for the same sites ranged from 0.12 to 0.53. These differences in the methods resulted in different assessments of some sites only and the number of sites that were assessed differently depended on the season, with spring samples showing most disparity. The samples may differ most in spring because many of the invertebrates are larger at that time (and thus are more conspicuous targets for live-sorters). The Live-sort data cannot be run through a predictive model created from Lab-sort data (and vice versa) because of the taxonomic differences in sub-sample composition and the sub-sampling methods must be standardized within and among studies if biological assessment is to provide valid comparisons of site condition. Assessments that rely on the Live-sorting method may indicate that sites are ‘less impaired’ in spring compared to autumn because more taxa are retrieved in spring when they are larger and more visible. Laboratory sub-sampling may return fewer taxa in spring, which may affect assessments relying on taxonomic richness

    AB - Aquatic macroinvertebrates are commonly used biological indicators for assessing the health of freshwater ecosystems. However, counting all the invertebrates in the large samples that are usually collected for rapid site assessment is time-consuming and costly. Therefore, sub-sampling is often done with fixed time or fixed count live-sorting in the field or with preserved material using sample splitters in the laboratory. We investigate the differences between site assessments provided when the two sub-sampling approaches (Live-sort and Lab-sort) were used in conjunction with predictive bioassessment models. The samples showed a method bias. The Live-sort sub-samples tended to have more large, conspicuous invertebrates and often fewer small and, or cryptic animals that were more likely to be found in Lab-sort samples where a microscope was used. The Live-sort method recovered 4–6 more taxa than Lab-sorting in spring, but not in autumn. The magnitude of the significant differences between Live-sort and Lab-sort predictive model outputs, observed to expected (O/E) taxa scores, for the same sites ranged from 0.12 to 0.53. These differences in the methods resulted in different assessments of some sites only and the number of sites that were assessed differently depended on the season, with spring samples showing most disparity. The samples may differ most in spring because many of the invertebrates are larger at that time (and thus are more conspicuous targets for live-sorters). The Live-sort data cannot be run through a predictive model created from Lab-sort data (and vice versa) because of the taxonomic differences in sub-sample composition and the sub-sampling methods must be standardized within and among studies if biological assessment is to provide valid comparisons of site condition. Assessments that rely on the Live-sorting method may indicate that sites are ‘less impaired’ in spring compared to autumn because more taxa are retrieved in spring when they are larger and more visible. Laboratory sub-sampling may return fewer taxa in spring, which may affect assessments relying on taxonomic richness

    U2 - 10.1007/s10750-006-0253-6

    DO - 10.1007/s10750-006-0253-6

    M3 - Article

    VL - 572

    SP - 195

    EP - 213

    JO - Hydrobiologia

    JF - Hydrobiologia

    SN - 0018-8158

    IS - 1

    ER -