TY - JOUR
T1 - Seasonal sex ratios and the evolution of temperature-dependent sex determination in oviparous lizards
AU - Pezaro, N.
AU - Thompson, M. B.
AU - Doody, Jeremiah
PY - 2016
Y1 - 2016
N2 - Although the adaptive significance of temperature-dependent sex determination (TSD) remains a puzzle, recent models implicate a seasonal bias in offspring sex production that translates into sex-specific fitness benefits later in life. Sex-specific emergence has been linked to fitness gains in some fish, birds and reptiles, but field data supporting the occurrence of a seasonal pattern of sex ratios in oviparous lizards are lacking. We tested the hypothesis that patterns of nest site selection and seasonal temperature changes combine to inhibit the materialization of sex-biased hatching times in a population of water dragons (Intellagama lesueurii). As predicted, a seasonal increase in air and nest temperatures resulted in a sex bias by nesting date; male-producing clutches were laid 17.8 days sooner than female-producing clutches, on average. However, the seasonal ramping of nest temperatures also caused shorter relative incubation periods in the later, all-female clutches. As a consequence of this developmental ‘catch-up’, the mean hatching date for male-producing nests preceded the mean hatching date for female-producing nests by only 7.2 days. We suggest that a contracted distribution of hatching dates compared to the distribution of oviposition dates represents a general pattern for oviparous reptiles in seasonal climates, which in TSD species may largely offset the temporal disparity in nesting dates between the sexes. Although data are needed for other TSD species, such minor age differences between male and female hatchlings may not translate into fitness differences later in life, an assumption of some models for the evolution and maintenance of TSD.
AB - Although the adaptive significance of temperature-dependent sex determination (TSD) remains a puzzle, recent models implicate a seasonal bias in offspring sex production that translates into sex-specific fitness benefits later in life. Sex-specific emergence has been linked to fitness gains in some fish, birds and reptiles, but field data supporting the occurrence of a seasonal pattern of sex ratios in oviparous lizards are lacking. We tested the hypothesis that patterns of nest site selection and seasonal temperature changes combine to inhibit the materialization of sex-biased hatching times in a population of water dragons (Intellagama lesueurii). As predicted, a seasonal increase in air and nest temperatures resulted in a sex bias by nesting date; male-producing clutches were laid 17.8 days sooner than female-producing clutches, on average. However, the seasonal ramping of nest temperatures also caused shorter relative incubation periods in the later, all-female clutches. As a consequence of this developmental ‘catch-up’, the mean hatching date for male-producing nests preceded the mean hatching date for female-producing nests by only 7.2 days. We suggest that a contracted distribution of hatching dates compared to the distribution of oviposition dates represents a general pattern for oviparous reptiles in seasonal climates, which in TSD species may largely offset the temporal disparity in nesting dates between the sexes. Although data are needed for other TSD species, such minor age differences between male and female hatchlings may not translate into fitness differences later in life, an assumption of some models for the evolution and maintenance of TSD.
KW - Intellagama lesueurii
KW - Lizards
KW - Nesting
KW - Seasonal reproduction
KW - Sex ratios
KW - Temperature-dependent sex determination
UR - http://www.scopus.com/inward/record.url?scp=84955327416&partnerID=8YFLogxK
U2 - 10.1007/s10682-016-9820-0
DO - 10.1007/s10682-016-9820-0
M3 - Article
SN - 0269-7653
VL - 30
SP - 551
EP - 565
JO - Evolutionary Ecology
JF - Evolutionary Ecology
IS - 3
ER -