Sediment Metal Concentration Survey Along the Mine-Affected Molonglo River, NSW, Australia

Chamani Marasinghe Wadige, Anne TAYLOR, Bill MAHER

    Research output: Contribution to journalArticle

    9 Citations (Scopus)

    Abstract

    Metal concentrations were measured in sediments of the mine-affected Molonglo River to determine current metal concentrations and distribution along the river. Compared with an uncontaminated site at 6.5 km upstream of the Captains Flat mine, sediments collected from the river at =12.5 km distance below the mine had a significantly higher percentage of finely divided silt and clay with higher concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The measured metal concentrations in the mine affected sites of the river were in the following order: Zn = 697-6818 > Pb = 23-1796 > Cu = 10-628 > Cd = 0.13-8.7 µg/g dry mass. The highest recorded metal concentrations were Cd at 48, Cu at 45, Pb at 240, and Zn at 81 times higher than the background concentrations of these metals in the river sediments. A clear sediment metal-contamination gradient from the mine site to 63 km downstream was established for Cd, Cu, Pb, and Zn in the river sediments. Compared with sediment metal concentrations before a major flood in 2010, only Zn concentrations increased. For all of the mine-affected sites studied, Cd and Zn concentrations exceeded the (ANZECC/ARMCANZ, Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, 2000) interim sediment-quality guidelines low values for Cd (1.5 µg/g dry mass) and the high value for Zn (410 µg/g dry mass). Existing metal loads in the riverbed sediments may still be adversely affecting the river infauna.
    Original languageEnglish
    Pages (from-to)572-582
    Number of pages11
    JournalArchives of Environmental Contamination and Toxicology
    Volume70
    Issue number3
    DOIs
    Publication statusPublished - 2016

    Fingerprint

    Rivers
    Sediments
    Zinc
    Metals
    Cadmium
    New Zealand
    Guidelines
    Surveys and Questionnaires
    Silt
    Water Quality
    Fresh Water
    Agriculture
    Water quality
    Copper
    Conservation
    Clay
    Contamination
    Lead

    Cite this

    @article{35546e35440340a6bddb3dba1bbf96ea,
    title = "Sediment Metal Concentration Survey Along the Mine-Affected Molonglo River, NSW, Australia",
    abstract = "Metal concentrations were measured in sediments of the mine-affected Molonglo River to determine current metal concentrations and distribution along the river. Compared with an uncontaminated site at 6.5 km upstream of the Captains Flat mine, sediments collected from the river at =12.5 km distance below the mine had a significantly higher percentage of finely divided silt and clay with higher concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The measured metal concentrations in the mine affected sites of the river were in the following order: Zn = 697-6818 > Pb = 23-1796 > Cu = 10-628 > Cd = 0.13-8.7 µg/g dry mass. The highest recorded metal concentrations were Cd at 48, Cu at 45, Pb at 240, and Zn at 81 times higher than the background concentrations of these metals in the river sediments. A clear sediment metal-contamination gradient from the mine site to 63 km downstream was established for Cd, Cu, Pb, and Zn in the river sediments. Compared with sediment metal concentrations before a major flood in 2010, only Zn concentrations increased. For all of the mine-affected sites studied, Cd and Zn concentrations exceeded the (ANZECC/ARMCANZ, Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, 2000) interim sediment-quality guidelines low values for Cd (1.5 µg/g dry mass) and the high value for Zn (410 µg/g dry mass). Existing metal loads in the riverbed sediments may still be adversely affecting the river infauna.",
    author = "{Marasinghe Wadige}, Chamani and Anne TAYLOR and Bill MAHER",
    year = "2016",
    doi = "10.1007/s00244-015-0259-z",
    language = "English",
    volume = "70",
    pages = "572--582",
    journal = "Archives of Environmental Contamination and Toxic...",
    issn = "0090-4341",
    publisher = "Springer",
    number = "3",

    }

    Sediment Metal Concentration Survey Along the Mine-Affected Molonglo River, NSW, Australia. / Marasinghe Wadige, Chamani; TAYLOR, Anne; MAHER, Bill.

    In: Archives of Environmental Contamination and Toxicology, Vol. 70, No. 3, 2016, p. 572-582.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Sediment Metal Concentration Survey Along the Mine-Affected Molonglo River, NSW, Australia

    AU - Marasinghe Wadige, Chamani

    AU - TAYLOR, Anne

    AU - MAHER, Bill

    PY - 2016

    Y1 - 2016

    N2 - Metal concentrations were measured in sediments of the mine-affected Molonglo River to determine current metal concentrations and distribution along the river. Compared with an uncontaminated site at 6.5 km upstream of the Captains Flat mine, sediments collected from the river at =12.5 km distance below the mine had a significantly higher percentage of finely divided silt and clay with higher concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The measured metal concentrations in the mine affected sites of the river were in the following order: Zn = 697-6818 > Pb = 23-1796 > Cu = 10-628 > Cd = 0.13-8.7 µg/g dry mass. The highest recorded metal concentrations were Cd at 48, Cu at 45, Pb at 240, and Zn at 81 times higher than the background concentrations of these metals in the river sediments. A clear sediment metal-contamination gradient from the mine site to 63 km downstream was established for Cd, Cu, Pb, and Zn in the river sediments. Compared with sediment metal concentrations before a major flood in 2010, only Zn concentrations increased. For all of the mine-affected sites studied, Cd and Zn concentrations exceeded the (ANZECC/ARMCANZ, Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, 2000) interim sediment-quality guidelines low values for Cd (1.5 µg/g dry mass) and the high value for Zn (410 µg/g dry mass). Existing metal loads in the riverbed sediments may still be adversely affecting the river infauna.

    AB - Metal concentrations were measured in sediments of the mine-affected Molonglo River to determine current metal concentrations and distribution along the river. Compared with an uncontaminated site at 6.5 km upstream of the Captains Flat mine, sediments collected from the river at =12.5 km distance below the mine had a significantly higher percentage of finely divided silt and clay with higher concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The measured metal concentrations in the mine affected sites of the river were in the following order: Zn = 697-6818 > Pb = 23-1796 > Cu = 10-628 > Cd = 0.13-8.7 µg/g dry mass. The highest recorded metal concentrations were Cd at 48, Cu at 45, Pb at 240, and Zn at 81 times higher than the background concentrations of these metals in the river sediments. A clear sediment metal-contamination gradient from the mine site to 63 km downstream was established for Cd, Cu, Pb, and Zn in the river sediments. Compared with sediment metal concentrations before a major flood in 2010, only Zn concentrations increased. For all of the mine-affected sites studied, Cd and Zn concentrations exceeded the (ANZECC/ARMCANZ, Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, 2000) interim sediment-quality guidelines low values for Cd (1.5 µg/g dry mass) and the high value for Zn (410 µg/g dry mass). Existing metal loads in the riverbed sediments may still be adversely affecting the river infauna.

    U2 - 10.1007/s00244-015-0259-z

    DO - 10.1007/s00244-015-0259-z

    M3 - Article

    VL - 70

    SP - 572

    EP - 582

    JO - Archives of Environmental Contamination and Toxic...

    JF - Archives of Environmental Contamination and Toxic...

    SN - 0090-4341

    IS - 3

    ER -