Short-Term Repeated-Sprint Training in Hot and Cool Conditions Similarly Benefits Performance in Team-Sport Athletes

Julien D. Périard, David B. Pyne, David J. Bishop, Alice Wallett, Olivier Girard

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)
    36 Downloads (Pure)


    This study compared the performance and physiological adaptations of short-term repeated-sprint training in HOT [40°C and 40% relative humidity (RH)] and COOL (20°C and 40% RH) conditions in team-sport athletes. Twenty-five trained males completed five training sessions of 60 min over 7 days in HOT (n = 13) or COOL (n = 12) conditions, consisting of a submaximal warm-up and four sets of maximal sprints. Before and after the intervention, intermittent shuttle running performance was assessed in cool and repeated-sprint ability in hot conditions; the latter preceded and followed by neuromuscular function testing. During the repeated-sprint training sessions, skin (~8.4°C) and core (~0.17°C) temperatures were higher in HOT than COOL (p < 0.05) conditions. Shuttle running distance increased after both interventions (p < 0.001), with a non-significant (p = 0.131) but larger effect in HOT (315 m, d = 1.18) than COOL (207 m, d = 0.51) conditions. Mean (~7%, p < 0.001) and peak (~5%, p < 0.05) power during repeated-sprinting increased following both interventions, whereas peak twitch force before the repeated-sprint assessment was ~10% lower after the interventions (p = 0.001). Heart rate during the repeated-sprint warm-up was reduced (~6 beats.min−1) following both interventions (p < 0.01). Rectal temperature was ~0.14°C lower throughout the repeated-sprint assessment after the interventions (p < 0.001), with larger effects in HOT than COOL during the warm-up (p = 0.082; d = −0.53 vs. d = −0.15) and repeated-sprints (p = 0.081; d = −0.54 vs. d = −0.02). Skin temperature (p = 0.004, d = −1.11) and thermal sensation (p = 0.015, d = −0.93) were lower during the repeated-sprints after training in HOT than COOL. Sweat rate increased (0.2 L.h−1) only after training in HOT (p = 0.027; d = 0.72). The intensive nature of brief repeated-sprint training induces similar improvements in repeated-sprint cycling ability in hot conditions and intermittent running performance in cool conditions, along with analogous physiological adaptations, irrespective of the environmental conditions in which training is undertaken.

    Original languageEnglish
    Article number1023
    Pages (from-to)1-11
    Number of pages11
    JournalFrontiers in Physiology
    Publication statusPublished - 27 Aug 2020


    Dive into the research topics of 'Short-Term Repeated-Sprint Training in Hot and Cool Conditions Similarly Benefits Performance in Team-Sport Athletes'. Together they form a unique fingerprint.

    Cite this