TY - JOUR
T1 - Stage racing at altitude induces hemodilution despite an increase in hemoglobin mass
AU - GARVICAN, Laura
AU - Schumacher, Yorck O.
AU - Clark, Sally A.
AU - Christian, Ryan
AU - Menaspa, Paolo
AU - Plowman, James
AU - Stephens, B
AU - Qi, Jiliang
AU - Fan, Rongyun
AU - He, Yingying
AU - Martin, David
AU - THOMPSON, Kevin
AU - Gore, Christopher
AU - Ma, Fuhai
N1 - Publisher Copyright:
© 2014 the American Physiological Society.
PY - 2014/9/1
Y1 - 2014/9/1
N2 - Plasma volume (PV) can be modulated by altitude exposure (decrease) and periods of intense exercise (increase). Cycle racing at altitude combines both stimuli, although presently no data exist to document which is dominant. Hemoglobin mass (Hbmass), hemoglobin concentration ([Hb]), and percent reticulocytes (%Retics) of altitude (ALT; n = 9) and sea-level (SL; n = 9) residents were measured during a 14-day cycling race, held at 1,146-4120 m, as well as during a simulated tour near sea level (SIM; n = 12). Hbmass was assessed before and on days 9 and 14 of racing. Venous blood was collected on days 0, 3, 6, 10, and 14. PV was calculated from Hbmass and [Hb]. A repeated-measures ANOVA was used to assess the impact of racing at altitude over time, within and between groups. [Hb] decreased significantly in all groups over time (P < 0.0001) with decreases evident on the third day of racing. %Retics increased significantly in SL only (P < 0.0001), with SL values elevated at day 6 compared with prerace (P = 0.02), but were suppressed by the end of the race (P = 0.0002). Hbmass significantly increased in SL after 9 (P = 0.0001) and 14 (P = 0.008) days of racing and was lower at the end of the race than midrace (P = 0.018). PV increased in all groups (P < 0.0001). Multiday cycle racing at altitude induces hemodilution of a similar magnitude to that observed during SL racing and occurs in nonacclimatized SL residents, despite an altitude-induced increase in Hbmass. Osmotic regulatory mechanisms associated with intense exercise appear to supersede acute enhancement of oxygen delivery at altitude.
AB - Plasma volume (PV) can be modulated by altitude exposure (decrease) and periods of intense exercise (increase). Cycle racing at altitude combines both stimuli, although presently no data exist to document which is dominant. Hemoglobin mass (Hbmass), hemoglobin concentration ([Hb]), and percent reticulocytes (%Retics) of altitude (ALT; n = 9) and sea-level (SL; n = 9) residents were measured during a 14-day cycling race, held at 1,146-4120 m, as well as during a simulated tour near sea level (SIM; n = 12). Hbmass was assessed before and on days 9 and 14 of racing. Venous blood was collected on days 0, 3, 6, 10, and 14. PV was calculated from Hbmass and [Hb]. A repeated-measures ANOVA was used to assess the impact of racing at altitude over time, within and between groups. [Hb] decreased significantly in all groups over time (P < 0.0001) with decreases evident on the third day of racing. %Retics increased significantly in SL only (P < 0.0001), with SL values elevated at day 6 compared with prerace (P = 0.02), but were suppressed by the end of the race (P = 0.0002). Hbmass significantly increased in SL after 9 (P = 0.0001) and 14 (P = 0.008) days of racing and was lower at the end of the race than midrace (P = 0.018). PV increased in all groups (P < 0.0001). Multiday cycle racing at altitude induces hemodilution of a similar magnitude to that observed during SL racing and occurs in nonacclimatized SL residents, despite an altitude-induced increase in Hbmass. Osmotic regulatory mechanisms associated with intense exercise appear to supersede acute enhancement of oxygen delivery at altitude.
KW - Athlete biological passport
KW - Erythropoiesis
KW - Hemoglobin mass
KW - Plasma volume
UR - http://www.mendeley.com/research/stage-racing-altitude-induces-hemodilution-despite-increase-hemoglobin-mass
UR - http://www.scopus.com/inward/record.url?scp=84907009530&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00242.2014
DO - 10.1152/japplphysiol.00242.2014
M3 - Article
C2 - 24994887
SN - 8750-7587
VL - 117
SP - 463
EP - 472
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 5
ER -