State-dependent physiological maintenance in a long-lived ectotherm, the painted turtle (Chrysemys picta)

Lisa Schwanz, Suzanne McGaugh, Daniel Warner, Roberta Di Terlizzi, Anne Bronikowski

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Energy allocation among somatic maintenance, reproduction and growth varies not only among species, but among individuals according to states such as age, sex and season. Little research has been conducted on the somatic (physiological) maintenance of long-lived organisms, particularly ectotherms such as reptiles. In this study, we examined sex differences and age- and seasonrelated variation in immune function and DNA repair efficiency in a long-lived reptile, the painted turtle (Chrysemys picta). Immune components tended to be depressed during hibernation, in winter, compared with autumn or spring. Increased heterophil count during hibernation provided the only support for winter immunoenhancement. In juvenile and adult turtles, we found little evidence for senescence in physiological maintenance, consistent with predictions for long-lived organisms. Among immune components, swelling in response to phytohemagglutinin (PHA) and control injection increased with age, whereas basophil count decreased with age. Hatchling turtles had reduced basophil counts and natural antibodies, indicative of an immature immune system, but demonstrated higher DNA repair efficiency than older turtles. Reproductively mature turtles had reduced lymphocytes compared with juvenile turtles in the spring, presumably driven by a trade-off between maintenance and reproduction. Sex had little influence on physiological maintenance. These results suggest that components of physiological maintenance are modulated differentially according to individual state and highlight the need for more research on the multiple components of physiological maintenance in animals of variable states.
Original languageEnglish
Pages (from-to)88-97
Number of pages10
JournalThe Journal of Experimental Biology
Volume214
DOIs
Publication statusPublished - 2011
Externally publishedYes

    Fingerprint

Cite this