Abstract
In this paper we give a detailed classification scheme for three-dimensional quantum zero curvature representation and tetrahedron equations. This scheme includes both even and odd parity components; the resulting algebras of observables are either Bose q-oscillators or Fermi oscillators. Three-dimensional R-matrices intertwining variously oriented tensor products of Bose and Fermi oscillators and satisfying tetrahedron and supertetrahedron equations are derived. The 3d→2d compactification reproduces Uq((n∣m)) superalgebras and their representation theory.
Original language | English |
---|---|
Pages | 1-28 |
Number of pages | 28 |
Publication status | Published - 2008 |