TY - JOUR
T1 - Task Scheduling Approach in Cloud Computing Environment Using Hybrid Differential Evolution
AU - Abdel-Basset, Mohamed
AU - Mohamed, Reda
AU - Abd Elkhalik, Waleed
AU - Sharawi, Marwa
AU - Sallam, Karam M.
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/10/31
Y1 - 2022/10/31
N2 - Task scheduling is one of the most significant challenges in the cloud computing environment and has attracted the attention of various researchers over the last decades, in order to achieve cost-effective execution and improve resource utilization. The challenge of task scheduling is categorized as a nondeterministic polynomial time (NP)-hard problem, which cannot be tackled with the classical methods, due to their inability to find a near-optimal solution within a reasonable time. Therefore, metaheuristic algorithms have recently been employed to overcome this problem, but these algorithms still suffer from falling into a local minima and from a low convergence speed. Therefore, in this study, a new task scheduler, known as hybrid differential evolution (HDE), is presented as a solution to the challenge of task scheduling in the cloud computing environment. This scheduler is based on two proposed enhancements to the traditional differential evolution. The first improvement is based on improving the scaling factor, to include numerical values generated dynamically and based on the current iteration, in order to improve both the exploration and exploitation operators; the second improvement is intended to improve the exploitation operator of the classical DE, in order to achieve better results in fewer iterations. Multiple tests utilizing randomly generated datasets and the CloudSim simulator were conducted, to demonstrate the efficacy of HDE. In addition, HDE was compared to a variety of heuristic and metaheuristic algorithms, including the slime mold algorithm (SMA), equilibrium optimizer (EO), sine cosine algorithm (SCA), whale optimization algorithm (WOA), grey wolf optimizer (GWO), classical DE, first come first served (FCFS), round robin (RR) algorithm, and shortest job first (SJF) scheduler. During trials, makespan and total execution time values were acquired for various task sizes, ranging from 100 to 3000. Compared to the other metaheuristic and heuristic algorithms considered, the results of the studies indicated that HDE generated superior outcomes. Consequently, HDE was found to be the most efficient metaheuristic scheduling algorithm among the numerous methods researched.
AB - Task scheduling is one of the most significant challenges in the cloud computing environment and has attracted the attention of various researchers over the last decades, in order to achieve cost-effective execution and improve resource utilization. The challenge of task scheduling is categorized as a nondeterministic polynomial time (NP)-hard problem, which cannot be tackled with the classical methods, due to their inability to find a near-optimal solution within a reasonable time. Therefore, metaheuristic algorithms have recently been employed to overcome this problem, but these algorithms still suffer from falling into a local minima and from a low convergence speed. Therefore, in this study, a new task scheduler, known as hybrid differential evolution (HDE), is presented as a solution to the challenge of task scheduling in the cloud computing environment. This scheduler is based on two proposed enhancements to the traditional differential evolution. The first improvement is based on improving the scaling factor, to include numerical values generated dynamically and based on the current iteration, in order to improve both the exploration and exploitation operators; the second improvement is intended to improve the exploitation operator of the classical DE, in order to achieve better results in fewer iterations. Multiple tests utilizing randomly generated datasets and the CloudSim simulator were conducted, to demonstrate the efficacy of HDE. In addition, HDE was compared to a variety of heuristic and metaheuristic algorithms, including the slime mold algorithm (SMA), equilibrium optimizer (EO), sine cosine algorithm (SCA), whale optimization algorithm (WOA), grey wolf optimizer (GWO), classical DE, first come first served (FCFS), round robin (RR) algorithm, and shortest job first (SJF) scheduler. During trials, makespan and total execution time values were acquired for various task sizes, ranging from 100 to 3000. Compared to the other metaheuristic and heuristic algorithms considered, the results of the studies indicated that HDE generated superior outcomes. Consequently, HDE was found to be the most efficient metaheuristic scheduling algorithm among the numerous methods researched.
KW - cloud computing
KW - differential evolution
KW - hybridization
KW - makespan
UR - http://www.scopus.com/inward/record.url?scp=85141692675&partnerID=8YFLogxK
U2 - 10.3390/math10214049
DO - 10.3390/math10214049
M3 - Article
AN - SCOPUS:85141692675
SN - 2227-7390
VL - 10
SP - 1
EP - 26
JO - Mathematics
JF - Mathematics
IS - 21
M1 - 4049
ER -