Abstract
Morphogenesis between yeast and hyphal growth is a characteristic associated with virulence in Candida albicans and involves changes in the cell wall. In Saccharomyces cerevisiae, the transcription factor pair Ace2p and Swi5p are key regulators of cell wall metabolism. Here, we have characterized the CaACE2 gene, which encodes the only C. albicans homologue of S. cerevisiae ACE2 and SWI5. Deleting CaACE2 results in a defect in cell separation, increased invasion of solid agar medium and inappropriate pseudohyphal growth, even in the absence of external inducers. The mutant cells have reduced adherence to plastic surfaces and generate biofilms with distinctly different morphology from wild-type cells. They are also avirulent in a mouse model. Deleting CaACE2 has no effect on expression of the chitinase gene CHT2, but expression of CHT3 and the putative cell wall genes CaDSE1 and CaSCW11 is reduced in both yeast and hyphal forms. The CaAce2 protein is localized to the daughter nucleus of large budded cells at the end of mitosis. C. albicans Ace2p therefore plays a major role in morphogenesis and adherence and resembles S. cerevisiae Ace2p in function
Original language | English |
---|---|
Pages (from-to) | 969-983 |
Number of pages | 15 |
Journal | Molecular Microbiology |
Volume | 53 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2004 |
Externally published | Yes |