The degradation of arsenoribosides from Ecklonia radiata tissues decomposed in natural and microbially manipulated microcosms

Bill MAHER, Simon FOSTER, Katarina Mikac

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Environmental context Arsenoribosides are the major arsenic species in marine macro-algae, yet inorganic arsenic is the major arsenic species found in seawater. We investigated the degradation of arsenoribosides associated with Ecklonia radiata by the use of microcosms containing both natural and autoclaved seawater and sand. The decomposition and persistence of arsenic species was linked to the use of autoclaved seawater and sand, which suggests that arsenoriboside degradation is governed by the microbial composition of microenvironments within marine systems. Abstract We investigated the influence of microbial communities on the degradation of arsenoribosides from E. radiata tissues decomposing in sand and seawater-based microcosms. During the first 30 days, arsenic was released from decomposing E. radiata tissues into seawater and sand porewaters in all microcosms. In microcosms containing autoclaved seawater and autoclaved sand, arsenic was shown to persist in soluble forms at concentrations (9-18μg per microcosm) far higher than those present initially (∼3μg per microcosm). Arsenoribosides were lost from decomposing E. radiata tissues in all microcosms with previously established arsenoriboside degradation products, such as thio-arsenic species, dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA) and arsenate (AsV) observed in all microcosms. DMAE and DMA persisted in the seawater and sand porewaters of microcosms containing autoclaved seawater and autoclaved sand. This suggests that the degradation step from arsenoribosides → DMAE occurs on algal surfaces, whereas the step from DMAE → AsV occurs predominantly in the water-column or sand-sediments. This study also demonstrates that disruptions to microbial connectivity (defined as the ability of microbes to recolonise vacant habitats) result in alterations to arsenic cycling. Thus, the re-cycling of arsenoribosides released from marine macro-algae is driven by microbial complexity plus microbial connectivity rather than species diversity as such, as previously assumed.

Original languageEnglish
Pages (from-to)289-300
Number of pages12
JournalEnvironmental Chemistry
Volume11
Issue number3
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'The degradation of arsenoribosides from Ecklonia radiata tissues decomposed in natural and microbially manipulated microcosms'. Together they form a unique fingerprint.

Cite this