The effect of eye movements in response to different types of scenes using a graph-based visual saliency algorithm

Maria Wahid, Asim Waris, Syed Omer Gilani, Ramanathan Subramanian

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
49 Downloads (Pure)

Abstract

Saliency is the quality of an object that makes it stands out from neighbouring items and grabs viewer attention. Regarding image processing, it refers to the pixel or group of pixels that stand out in an image or a video clip and capture the attention of the viewer. Our eye movements are usually guided by saliency while inspecting a scene. Rapid detection of emotive stimuli an ability possessed by humans. Visual objects in a scene are also emotionally salient. As different images and clips can elicit different emotional responses in a viewer such as happiness or sadness, there is a need to measure these emotions along with visual saliency. This study was conducted to determine whether the existing available visual saliency models can also measure emotional saliency. A classical Graph-Based Visual Saliency (GBVS) model is used in the study. Results show that there is low saliency or salient features in sad movies with at least a significant difference of 0.05 between happy and sad videos as well as a large mean difference of 76.57 and 57.0, hence making these videos less emotionally salient. However, overall visual content does not capture emotional salience. The applied Graph-Based Visual Saliencymodel notably identified happy emotions but could not analyze sad emotions.

Original languageEnglish
Article number5378
Pages (from-to)1-11
JournalApplied Sciences (Switzerland)
Volume9
Issue number24
DOIs
Publication statusPublished - 9 Dec 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'The effect of eye movements in response to different types of scenes using a graph-based visual saliency algorithm'. Together they form a unique fingerprint.

Cite this