The formation and fate of organoarsenic species in marine ecosystems: Do existing experimental approaches appropriately simulate ecosystem complexity?

    Research output: Contribution to journalArticle

    8 Citations (Scopus)

    Abstract

    Environmental context In marine environments, inorganic arsenic present in seawater is transformed to organoarsenic species, mainly arsenoribosides in algae and arsenobetaine in animals. These transformations decrease the toxicity of arsenic, yet the fate of arsenoribosides and arsenobetaine when marine organisms decompose is unknown. We review the current literature on the degradation of these organoarsenic species in marine systems detailing the drivers behind their degradation, and also discuss the environmental relevance of laboratory-based experiments. Abstract Despite arsenoribosides and arsenobetaine (AB) being the major arsenic species in marine macro-algae and animals they have never been detected in seawater. In all studies reviewed arsenoribosides from marine macro-algae were degraded to thio-arsenoribosides, dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA), methylarsenate (MA) with arsenate (AsV) the final product of degradation. The use of different macro-algae species and different experimental microcosms did not influence the arsenoriboside degradation pathway. The use of different experimental approaches, however, did influence the rate and extent at which arsenoriboside degradation occurred. This was almost certainly a function of the complexity of the microbial community within the microcosm, with greater complexity resulting in rapid and more complete arsenoriboside degradation. AB from decomposing animal tissues is degraded to trimethylarsine oxide (TMAO) or dimethylarsenoacetate (DMAA), DMA and finally AsV. The degradation of AB unlike arsenoribosides occurs via a dual pathway with environmental or microbial community variability influencing the pathway taken. The environmental validity of different experimental approaches used to examine the fate of organoarsenic species was also reviewed. It was evident that although liquid culture incubation studies are cheap and reproducible they lack the ability to culture representative microbial communities. Microcosm studies that include sand and sediment are more environmentally representative as they are a better simulation of marine ecosystems and are also likely to facilitate complex microbial communities. An added benefit of microcosm studies is that they are able to be run in parallel with field-based research to provide a holistic assessment of the degradation of organoarsenic species in marine environments.
    Original languageEnglish
    Pages (from-to)149-162
    Number of pages14
    JournalEnvironmental Chemistry
    Volume12
    Issue number2
    DOIs
    Publication statusPublished - 2015

    Fingerprint

    Aquatic ecosystems
    marine ecosystem
    Ecosystems
    Degradation
    degradation
    ecosystem
    Algae
    microcosm
    macroalga
    microbial community
    Arsenic
    Macros
    arsenic
    Animals
    Seawater
    animal
    marine environment
    seawater
    arsenate
    literature review

    Cite this

    @article{d8c27d273350451e991da25e6956ecfe,
    title = "The formation and fate of organoarsenic species in marine ecosystems: Do existing experimental approaches appropriately simulate ecosystem complexity?",
    abstract = "Environmental context In marine environments, inorganic arsenic present in seawater is transformed to organoarsenic species, mainly arsenoribosides in algae and arsenobetaine in animals. These transformations decrease the toxicity of arsenic, yet the fate of arsenoribosides and arsenobetaine when marine organisms decompose is unknown. We review the current literature on the degradation of these organoarsenic species in marine systems detailing the drivers behind their degradation, and also discuss the environmental relevance of laboratory-based experiments. Abstract Despite arsenoribosides and arsenobetaine (AB) being the major arsenic species in marine macro-algae and animals they have never been detected in seawater. In all studies reviewed arsenoribosides from marine macro-algae were degraded to thio-arsenoribosides, dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA), methylarsenate (MA) with arsenate (AsV) the final product of degradation. The use of different macro-algae species and different experimental microcosms did not influence the arsenoriboside degradation pathway. The use of different experimental approaches, however, did influence the rate and extent at which arsenoriboside degradation occurred. This was almost certainly a function of the complexity of the microbial community within the microcosm, with greater complexity resulting in rapid and more complete arsenoriboside degradation. AB from decomposing animal tissues is degraded to trimethylarsine oxide (TMAO) or dimethylarsenoacetate (DMAA), DMA and finally AsV. The degradation of AB unlike arsenoribosides occurs via a dual pathway with environmental or microbial community variability influencing the pathway taken. The environmental validity of different experimental approaches used to examine the fate of organoarsenic species was also reviewed. It was evident that although liquid culture incubation studies are cheap and reproducible they lack the ability to culture representative microbial communities. Microcosm studies that include sand and sediment are more environmentally representative as they are a better simulation of marine ecosystems and are also likely to facilitate complex microbial communities. An added benefit of microcosm studies is that they are able to be run in parallel with field-based research to provide a holistic assessment of the degradation of organoarsenic species in marine environments.",
    author = "Bill MAHER and Simon FOSTER",
    year = "2015",
    doi = "10.1071/EN14124",
    language = "English",
    volume = "12",
    pages = "149--162",
    journal = "Environmental Chemistry",
    issn = "1448-2517",
    publisher = "CSIRO",
    number = "2",

    }

    TY - JOUR

    T1 - The formation and fate of organoarsenic species in marine ecosystems: Do existing experimental approaches appropriately simulate ecosystem complexity?

    AU - MAHER, Bill

    AU - FOSTER, Simon

    PY - 2015

    Y1 - 2015

    N2 - Environmental context In marine environments, inorganic arsenic present in seawater is transformed to organoarsenic species, mainly arsenoribosides in algae and arsenobetaine in animals. These transformations decrease the toxicity of arsenic, yet the fate of arsenoribosides and arsenobetaine when marine organisms decompose is unknown. We review the current literature on the degradation of these organoarsenic species in marine systems detailing the drivers behind their degradation, and also discuss the environmental relevance of laboratory-based experiments. Abstract Despite arsenoribosides and arsenobetaine (AB) being the major arsenic species in marine macro-algae and animals they have never been detected in seawater. In all studies reviewed arsenoribosides from marine macro-algae were degraded to thio-arsenoribosides, dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA), methylarsenate (MA) with arsenate (AsV) the final product of degradation. The use of different macro-algae species and different experimental microcosms did not influence the arsenoriboside degradation pathway. The use of different experimental approaches, however, did influence the rate and extent at which arsenoriboside degradation occurred. This was almost certainly a function of the complexity of the microbial community within the microcosm, with greater complexity resulting in rapid and more complete arsenoriboside degradation. AB from decomposing animal tissues is degraded to trimethylarsine oxide (TMAO) or dimethylarsenoacetate (DMAA), DMA and finally AsV. The degradation of AB unlike arsenoribosides occurs via a dual pathway with environmental or microbial community variability influencing the pathway taken. The environmental validity of different experimental approaches used to examine the fate of organoarsenic species was also reviewed. It was evident that although liquid culture incubation studies are cheap and reproducible they lack the ability to culture representative microbial communities. Microcosm studies that include sand and sediment are more environmentally representative as they are a better simulation of marine ecosystems and are also likely to facilitate complex microbial communities. An added benefit of microcosm studies is that they are able to be run in parallel with field-based research to provide a holistic assessment of the degradation of organoarsenic species in marine environments.

    AB - Environmental context In marine environments, inorganic arsenic present in seawater is transformed to organoarsenic species, mainly arsenoribosides in algae and arsenobetaine in animals. These transformations decrease the toxicity of arsenic, yet the fate of arsenoribosides and arsenobetaine when marine organisms decompose is unknown. We review the current literature on the degradation of these organoarsenic species in marine systems detailing the drivers behind their degradation, and also discuss the environmental relevance of laboratory-based experiments. Abstract Despite arsenoribosides and arsenobetaine (AB) being the major arsenic species in marine macro-algae and animals they have never been detected in seawater. In all studies reviewed arsenoribosides from marine macro-algae were degraded to thio-arsenoribosides, dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA), methylarsenate (MA) with arsenate (AsV) the final product of degradation. The use of different macro-algae species and different experimental microcosms did not influence the arsenoriboside degradation pathway. The use of different experimental approaches, however, did influence the rate and extent at which arsenoriboside degradation occurred. This was almost certainly a function of the complexity of the microbial community within the microcosm, with greater complexity resulting in rapid and more complete arsenoriboside degradation. AB from decomposing animal tissues is degraded to trimethylarsine oxide (TMAO) or dimethylarsenoacetate (DMAA), DMA and finally AsV. The degradation of AB unlike arsenoribosides occurs via a dual pathway with environmental or microbial community variability influencing the pathway taken. The environmental validity of different experimental approaches used to examine the fate of organoarsenic species was also reviewed. It was evident that although liquid culture incubation studies are cheap and reproducible they lack the ability to culture representative microbial communities. Microcosm studies that include sand and sediment are more environmentally representative as they are a better simulation of marine ecosystems and are also likely to facilitate complex microbial communities. An added benefit of microcosm studies is that they are able to be run in parallel with field-based research to provide a holistic assessment of the degradation of organoarsenic species in marine environments.

    U2 - 10.1071/EN14124

    DO - 10.1071/EN14124

    M3 - Article

    VL - 12

    SP - 149

    EP - 162

    JO - Environmental Chemistry

    JF - Environmental Chemistry

    SN - 1448-2517

    IS - 2

    ER -