The Fraser Gyre

A cyclonic eddy off the coast of eastern Australia

Mochamad Furqon Azis Ismail, Joachim Ribbe, Johannes Karstensen, Charles Lemckert, Serena Lee, Johann Gustafson

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This paper examines the on-shelf circulation of the eastern Australian continental shelf for a region off southeast Queensland. We identify a characteristic seasonally reoccurring wind-driven cyclonic flow. It influences the cross-shelf exchange with the East Australian Current (EAC), which is the western boundary current of the South Pacific Ocean. We refer to this cyclonic circulation as the Fraser Gyre. It is located south of Fraser Island between about 25 °S and 27 °S. The region is adjacent to the intensification zone of the EAC where the current accelerates and establishes a swift, albeit seasonally variable southward boundary flow. Through the analysis of several data sets including remotely sensed sea surface temperature and sea surface height anomaly, satellite tracked surface drifters, ocean and atmospheric reanalysis data as well as geostrophic currents from altimetry, we find that the on-shelf Fraser Gyre develops during the southern hemisphere autumn and winter months. The gyre is associated with a longshore near-coast northward flow. Maximum northward on-shelf depth averaged velocities are estimated with about 0.15–0.26 ms-1. The flow turns eastward just to the south of Fraser Island and joins the persistent southward EAC flow along the shelf break. The annual mean net cross-shelf outward and inward flow associated with the gyre is about −1.17 ± 0.23 Sv in the north and 0.23 ± 0.13 Sv (1 Sv = 106 m3s−1) in the south. Mean seasonal water renewal time scales of the continental shelf are longest during austral winter with an average of about 3.3 days due to the Fraser Gyre retaining water over the shelf, however, monthly estimates range from 2 to 8 days with the longer timescale during the austral autumn and winter. The southerly wind during austral autumn and winter is identified as controlling the on shelf circulation and is the principal driver of the seasonally appearing Fraser Gyre. The conceptual model of the Fraser Gyre is consistent with general physical principals of the coastal shelf circulation. A southerly wind is associated with surface layer flow toward the coast, a near coast positive SSHa with a current in the direction of the wind, down-welling and export of shelf water. The Fraser Gyre influenced cross-shelf exchanges are possibly facilitating the offshore transport of fish larvae, sediments, nutrients, river discharges, and other properties across the shelf break and into the southward flowing EAC during the austral autumn and winter.

Original languageEnglish
Pages (from-to)72-85
Number of pages14
JournalEstuarine, Coastal and Shelf Science
Volume192
DOIs
Publication statusPublished - 5 Jun 2017

Fingerprint

gyre
eddy
coasts
coast
winter
autumn
shelf break
continental shelf
Apodidae
timescale
water
wind direction
fish larvae
western boundary current
drifter
sea surface height
altimetry
Pacific Ocean
Queensland
surface temperature

Cite this

Azis Ismail, Mochamad Furqon ; Ribbe, Joachim ; Karstensen, Johannes ; Lemckert, Charles ; Lee, Serena ; Gustafson, Johann. / The Fraser Gyre : A cyclonic eddy off the coast of eastern Australia. In: Estuarine, Coastal and Shelf Science. 2017 ; Vol. 192. pp. 72-85.
@article{aa357861e1f542b894ea0c6fae6a2964,
title = "The Fraser Gyre: A cyclonic eddy off the coast of eastern Australia",
abstract = "This paper examines the on-shelf circulation of the eastern Australian continental shelf for a region off southeast Queensland. We identify a characteristic seasonally reoccurring wind-driven cyclonic flow. It influences the cross-shelf exchange with the East Australian Current (EAC), which is the western boundary current of the South Pacific Ocean. We refer to this cyclonic circulation as the Fraser Gyre. It is located south of Fraser Island between about 25 °S and 27 °S. The region is adjacent to the intensification zone of the EAC where the current accelerates and establishes a swift, albeit seasonally variable southward boundary flow. Through the analysis of several data sets including remotely sensed sea surface temperature and sea surface height anomaly, satellite tracked surface drifters, ocean and atmospheric reanalysis data as well as geostrophic currents from altimetry, we find that the on-shelf Fraser Gyre develops during the southern hemisphere autumn and winter months. The gyre is associated with a longshore near-coast northward flow. Maximum northward on-shelf depth averaged velocities are estimated with about 0.15–0.26 ms-1. The flow turns eastward just to the south of Fraser Island and joins the persistent southward EAC flow along the shelf break. The annual mean net cross-shelf outward and inward flow associated with the gyre is about −1.17 ± 0.23 Sv in the north and 0.23 ± 0.13 Sv (1 Sv = 106 m3s−1) in the south. Mean seasonal water renewal time scales of the continental shelf are longest during austral winter with an average of about 3.3 days due to the Fraser Gyre retaining water over the shelf, however, monthly estimates range from 2 to 8 days with the longer timescale during the austral autumn and winter. The southerly wind during austral autumn and winter is identified as controlling the on shelf circulation and is the principal driver of the seasonally appearing Fraser Gyre. The conceptual model of the Fraser Gyre is consistent with general physical principals of the coastal shelf circulation. A southerly wind is associated with surface layer flow toward the coast, a near coast positive SSHa with a current in the direction of the wind, down-welling and export of shelf water. The Fraser Gyre influenced cross-shelf exchanges are possibly facilitating the offshore transport of fish larvae, sediments, nutrients, river discharges, and other properties across the shelf break and into the southward flowing EAC during the austral autumn and winter.",
keywords = "Cross-shelf transport, East australian current, Fraser gyre, Geostrophic current, Residence time scale",
author = "{Azis Ismail}, {Mochamad Furqon} and Joachim Ribbe and Johannes Karstensen and Charles Lemckert and Serena Lee and Johann Gustafson",
year = "2017",
month = "6",
day = "5",
doi = "10.1016/j.ecss.2017.04.031",
language = "English",
volume = "192",
pages = "72--85",
journal = "Estuarine and Coastal Marine Science",
issn = "0272-7714",
publisher = "Academic Press Inc.",

}

The Fraser Gyre : A cyclonic eddy off the coast of eastern Australia. / Azis Ismail, Mochamad Furqon; Ribbe, Joachim; Karstensen, Johannes; Lemckert, Charles; Lee, Serena; Gustafson, Johann.

In: Estuarine, Coastal and Shelf Science, Vol. 192, 05.06.2017, p. 72-85.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The Fraser Gyre

T2 - A cyclonic eddy off the coast of eastern Australia

AU - Azis Ismail, Mochamad Furqon

AU - Ribbe, Joachim

AU - Karstensen, Johannes

AU - Lemckert, Charles

AU - Lee, Serena

AU - Gustafson, Johann

PY - 2017/6/5

Y1 - 2017/6/5

N2 - This paper examines the on-shelf circulation of the eastern Australian continental shelf for a region off southeast Queensland. We identify a characteristic seasonally reoccurring wind-driven cyclonic flow. It influences the cross-shelf exchange with the East Australian Current (EAC), which is the western boundary current of the South Pacific Ocean. We refer to this cyclonic circulation as the Fraser Gyre. It is located south of Fraser Island between about 25 °S and 27 °S. The region is adjacent to the intensification zone of the EAC where the current accelerates and establishes a swift, albeit seasonally variable southward boundary flow. Through the analysis of several data sets including remotely sensed sea surface temperature and sea surface height anomaly, satellite tracked surface drifters, ocean and atmospheric reanalysis data as well as geostrophic currents from altimetry, we find that the on-shelf Fraser Gyre develops during the southern hemisphere autumn and winter months. The gyre is associated with a longshore near-coast northward flow. Maximum northward on-shelf depth averaged velocities are estimated with about 0.15–0.26 ms-1. The flow turns eastward just to the south of Fraser Island and joins the persistent southward EAC flow along the shelf break. The annual mean net cross-shelf outward and inward flow associated with the gyre is about −1.17 ± 0.23 Sv in the north and 0.23 ± 0.13 Sv (1 Sv = 106 m3s−1) in the south. Mean seasonal water renewal time scales of the continental shelf are longest during austral winter with an average of about 3.3 days due to the Fraser Gyre retaining water over the shelf, however, monthly estimates range from 2 to 8 days with the longer timescale during the austral autumn and winter. The southerly wind during austral autumn and winter is identified as controlling the on shelf circulation and is the principal driver of the seasonally appearing Fraser Gyre. The conceptual model of the Fraser Gyre is consistent with general physical principals of the coastal shelf circulation. A southerly wind is associated with surface layer flow toward the coast, a near coast positive SSHa with a current in the direction of the wind, down-welling and export of shelf water. The Fraser Gyre influenced cross-shelf exchanges are possibly facilitating the offshore transport of fish larvae, sediments, nutrients, river discharges, and other properties across the shelf break and into the southward flowing EAC during the austral autumn and winter.

AB - This paper examines the on-shelf circulation of the eastern Australian continental shelf for a region off southeast Queensland. We identify a characteristic seasonally reoccurring wind-driven cyclonic flow. It influences the cross-shelf exchange with the East Australian Current (EAC), which is the western boundary current of the South Pacific Ocean. We refer to this cyclonic circulation as the Fraser Gyre. It is located south of Fraser Island between about 25 °S and 27 °S. The region is adjacent to the intensification zone of the EAC where the current accelerates and establishes a swift, albeit seasonally variable southward boundary flow. Through the analysis of several data sets including remotely sensed sea surface temperature and sea surface height anomaly, satellite tracked surface drifters, ocean and atmospheric reanalysis data as well as geostrophic currents from altimetry, we find that the on-shelf Fraser Gyre develops during the southern hemisphere autumn and winter months. The gyre is associated with a longshore near-coast northward flow. Maximum northward on-shelf depth averaged velocities are estimated with about 0.15–0.26 ms-1. The flow turns eastward just to the south of Fraser Island and joins the persistent southward EAC flow along the shelf break. The annual mean net cross-shelf outward and inward flow associated with the gyre is about −1.17 ± 0.23 Sv in the north and 0.23 ± 0.13 Sv (1 Sv = 106 m3s−1) in the south. Mean seasonal water renewal time scales of the continental shelf are longest during austral winter with an average of about 3.3 days due to the Fraser Gyre retaining water over the shelf, however, monthly estimates range from 2 to 8 days with the longer timescale during the austral autumn and winter. The southerly wind during austral autumn and winter is identified as controlling the on shelf circulation and is the principal driver of the seasonally appearing Fraser Gyre. The conceptual model of the Fraser Gyre is consistent with general physical principals of the coastal shelf circulation. A southerly wind is associated with surface layer flow toward the coast, a near coast positive SSHa with a current in the direction of the wind, down-welling and export of shelf water. The Fraser Gyre influenced cross-shelf exchanges are possibly facilitating the offshore transport of fish larvae, sediments, nutrients, river discharges, and other properties across the shelf break and into the southward flowing EAC during the austral autumn and winter.

KW - Cross-shelf transport

KW - East australian current

KW - Fraser gyre

KW - Geostrophic current

KW - Residence time scale

U2 - 10.1016/j.ecss.2017.04.031

DO - 10.1016/j.ecss.2017.04.031

M3 - Article

VL - 192

SP - 72

EP - 85

JO - Estuarine and Coastal Marine Science

JF - Estuarine and Coastal Marine Science

SN - 0272-7714

ER -