The riverine ecosystem synthesis: biocomplexity in river networks across space and time

James Thorp, Martin Thoms, M Delong

    Research output: Contribution to journalArticlepeer-review

    734 Citations (Scopus)

    Abstract

    We propose an integrated, heuristic model of lotic biocomplexity across spatiotemporal scales from headwaters to large rivers. This riverine ecosystem synthesis (RES) provides a framework for understanding both broad, often discontinuous patterns along longitudinal and lateral dimensions of river networks and local ecological patterns across various temporal and smaller spatial scales. Rather than posing a completely new model, we arrange a conceptual marriage of eco-geomorphology (ecological aspects of fluvial geomorphology) with a terrestrial landscape model describing hierarchical patch dynamics. We modify five components of this terrestrial model for lotic ecosystems: (1) nested, discontinuous hierarchies of patch mosaics; (2) ecosystem dynamics as a composite of intra- and inter-patch dynamics; (3) linked patterns and processes; (4) dominance of non-equilibrial and stochastic processes; and (5) formation of a quasi-equilibrial, metastable state. Our conceptual model blends our perspectives on biocomplexity with aspects of aquatic models proposed from 1980–2004.

    Contrasting with a common view of rivers as continuous, longitudinal gradients in physical conditions, the RES portrays rivers as downstream arrays of large hydrogeomorphic patches (e.g. constricted, braided and floodplain channel areas) formed by catchment geomorphology and climate. The longitudinal distribution of these patches, which are identifiable using standard geomorphic techniques, varies amongst rivers and is difficult to forecast above ecoregional scales. Some types of hydrogeomorphic patches may reoccur along this downstream passage. Unique ecological ‘functional process zones’ are formed by individual types of hydrogeomorphic patches because of physiochemical habitat differences which affect ecosystem structure and function
    Original languageEnglish
    Pages (from-to)123-147
    Number of pages25
    JournalRiver Research and Applications: an international journal devoted to river research and management
    Volume22
    Issue number2
    DOIs
    Publication statusPublished - 2006

    Fingerprint

    Dive into the research topics of 'The riverine ecosystem synthesis: biocomplexity in river networks across space and time'. Together they form a unique fingerprint.

    Cite this