The transmission rate of MCMV in house mice in pens: implications for virally vectored immunocontraception

A Arthur, L Farroway, Grant Singleton

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Pest mammals have severe economic, environmental and social impacts throughout the world. Fertility control could reduce these impacts. Murine cytomegalovirus (MCMV) is being considered as an immunocontraceptive vector to control outbreaks of house mice (Mus domesticus) in Australian grain-growing regions. For successful control, a modified MCMVmust transmit at a sufficient rate to keep populations of house mice below acceptable economic thresholds. We used disease models developed previously by using observations of free-ranging wild-mouse populations to assess the transmission rate of two laboratory strains of MCMV (N1 and G4) collected in a previous experiment. Mice contained in pens were deliberately infected with the N1 strain only, or with the N1 strain followed by the G4 strain. If we assume density-dependent transmission, which is the more likely mode of transmission, we found the N1 strain of MCMV transmitted at a rate ~1/300 of the rate of field strains, and hence too slowly for successful virally vectored immunocontraception (VVIC). If transmission was frequency-dependent, the rate of transmission was ~1/3 of the rate of field strains, and hence may allow successful VVIC. The G4 strain transmitted at least as slowly as the N1 strain, and possibly much more slowly; however, we could not determine whether this was an inherent property of the G4 strain or whether it was caused by competition with the N1 strain. Given the reliance of successful VVIC on rapid transmission, we recommend that future work in any VVIC system explicitly quantifies the transmission rate of recombinant viruses relative to field strains, both in the presence and absence of competing strains.
Original languageEnglish
Pages (from-to)386-393
Number of pages8
JournalWildlife Research
Volume36
DOIs
Publication statusPublished - 2009
Externally publishedYes

Fingerprint

immunocontraception
Cytomegalovirus
Mus musculus
mice
social impact
rate
wild population
economic impact
fertility
virus
environmental impact
mammal
Mus
economic threshold
disease models

Cite this

Arthur, A ; Farroway, L ; Singleton, Grant. / The transmission rate of MCMV in house mice in pens: implications for virally vectored immunocontraception. In: Wildlife Research. 2009 ; Vol. 36. pp. 386-393.
@article{c3571d797e814483a68cb7ab56cd316e,
title = "The transmission rate of MCMV in house mice in pens: implications for virally vectored immunocontraception",
abstract = "Pest mammals have severe economic, environmental and social impacts throughout the world. Fertility control could reduce these impacts. Murine cytomegalovirus (MCMV) is being considered as an immunocontraceptive vector to control outbreaks of house mice (Mus domesticus) in Australian grain-growing regions. For successful control, a modified MCMVmust transmit at a sufficient rate to keep populations of house mice below acceptable economic thresholds. We used disease models developed previously by using observations of free-ranging wild-mouse populations to assess the transmission rate of two laboratory strains of MCMV (N1 and G4) collected in a previous experiment. Mice contained in pens were deliberately infected with the N1 strain only, or with the N1 strain followed by the G4 strain. If we assume density-dependent transmission, which is the more likely mode of transmission, we found the N1 strain of MCMV transmitted at a rate ~1/300 of the rate of field strains, and hence too slowly for successful virally vectored immunocontraception (VVIC). If transmission was frequency-dependent, the rate of transmission was ~1/3 of the rate of field strains, and hence may allow successful VVIC. The G4 strain transmitted at least as slowly as the N1 strain, and possibly much more slowly; however, we could not determine whether this was an inherent property of the G4 strain or whether it was caused by competition with the N1 strain. Given the reliance of successful VVIC on rapid transmission, we recommend that future work in any VVIC system explicitly quantifies the transmission rate of recombinant viruses relative to field strains, both in the presence and absence of competing strains.",
author = "A Arthur and L Farroway and Grant Singleton",
year = "2009",
doi = "10.1071/WR09006",
language = "English",
volume = "36",
pages = "386--393",
journal = "Australian Wildlife Research",
issn = "1035-3712",
publisher = "CSIRO",

}

The transmission rate of MCMV in house mice in pens: implications for virally vectored immunocontraception. / Arthur, A; Farroway, L; Singleton, Grant.

In: Wildlife Research, Vol. 36, 2009, p. 386-393.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The transmission rate of MCMV in house mice in pens: implications for virally vectored immunocontraception

AU - Arthur, A

AU - Farroway, L

AU - Singleton, Grant

PY - 2009

Y1 - 2009

N2 - Pest mammals have severe economic, environmental and social impacts throughout the world. Fertility control could reduce these impacts. Murine cytomegalovirus (MCMV) is being considered as an immunocontraceptive vector to control outbreaks of house mice (Mus domesticus) in Australian grain-growing regions. For successful control, a modified MCMVmust transmit at a sufficient rate to keep populations of house mice below acceptable economic thresholds. We used disease models developed previously by using observations of free-ranging wild-mouse populations to assess the transmission rate of two laboratory strains of MCMV (N1 and G4) collected in a previous experiment. Mice contained in pens were deliberately infected with the N1 strain only, or with the N1 strain followed by the G4 strain. If we assume density-dependent transmission, which is the more likely mode of transmission, we found the N1 strain of MCMV transmitted at a rate ~1/300 of the rate of field strains, and hence too slowly for successful virally vectored immunocontraception (VVIC). If transmission was frequency-dependent, the rate of transmission was ~1/3 of the rate of field strains, and hence may allow successful VVIC. The G4 strain transmitted at least as slowly as the N1 strain, and possibly much more slowly; however, we could not determine whether this was an inherent property of the G4 strain or whether it was caused by competition with the N1 strain. Given the reliance of successful VVIC on rapid transmission, we recommend that future work in any VVIC system explicitly quantifies the transmission rate of recombinant viruses relative to field strains, both in the presence and absence of competing strains.

AB - Pest mammals have severe economic, environmental and social impacts throughout the world. Fertility control could reduce these impacts. Murine cytomegalovirus (MCMV) is being considered as an immunocontraceptive vector to control outbreaks of house mice (Mus domesticus) in Australian grain-growing regions. For successful control, a modified MCMVmust transmit at a sufficient rate to keep populations of house mice below acceptable economic thresholds. We used disease models developed previously by using observations of free-ranging wild-mouse populations to assess the transmission rate of two laboratory strains of MCMV (N1 and G4) collected in a previous experiment. Mice contained in pens were deliberately infected with the N1 strain only, or with the N1 strain followed by the G4 strain. If we assume density-dependent transmission, which is the more likely mode of transmission, we found the N1 strain of MCMV transmitted at a rate ~1/300 of the rate of field strains, and hence too slowly for successful virally vectored immunocontraception (VVIC). If transmission was frequency-dependent, the rate of transmission was ~1/3 of the rate of field strains, and hence may allow successful VVIC. The G4 strain transmitted at least as slowly as the N1 strain, and possibly much more slowly; however, we could not determine whether this was an inherent property of the G4 strain or whether it was caused by competition with the N1 strain. Given the reliance of successful VVIC on rapid transmission, we recommend that future work in any VVIC system explicitly quantifies the transmission rate of recombinant viruses relative to field strains, both in the presence and absence of competing strains.

U2 - 10.1071/WR09006

DO - 10.1071/WR09006

M3 - Article

VL - 36

SP - 386

EP - 393

JO - Australian Wildlife Research

JF - Australian Wildlife Research

SN - 1035-3712

ER -