The use of multivariate statistics to elucidate patterns of floodplain sedimentation at different spatial scales

Martin Thoms, Melissa Parsons, John Foster

    Research output: Contribution to journalArticle

    15 Citations (Scopus)

    Abstract

    Floodplains are depositional features of riverine landscapes that display complex sedimentation patterns that are amenable to multi-scale approaches. We examined sedimentation in the Lower Balonne floodplain, Queensland, Australia, at three different spatial scales: the channel (103 km), floodplain process zone (10 km) and geomorphic unit (102 m) scales, and compared scale-related patterns evident from stratigraphy with those evident from quantitative multivariate analysis. Three stratigraphic sequences were found in the Lower Balonne floodplain: generally fining upward, episodic fining upward, and mud-dominated. Stratigraphical analysis revealed the detailed character of sedimentary sequences embedded within the scale patterns derived from multivariate analysis. Multivariate statistical analyses of a range of textural and geochemical data revealed different patterns of floodplain sedimentation at each scale. At the channel scale, sediment texture and geochemistry were more heterogeneous in the Culgoa River than in Briarie Creek. At the floodplain process zone scale clear patterns of sediment texture and geochemistry were observed along the upper, mid and lower floodplain process zones of Briarie Creek, but not along the Culgoa River. At the geomorphic unit scale, clear patterns of sediment texture and geochemistry were observed among the bank, buried channel and flat floodplain units of the Culgoa River, but were not as clear in Briarie Creek. Recognition of rivers as hierarchically organized systems is an emerging paradigm in river science. Our study supports this paradigm by demonstrating that different sedimentation patterns occur at different scales to reveal a hierarchically organized floodplain environment
    Original languageEnglish
    Pages (from-to)672-686
    Number of pages15
    JournalEarth Surface Processes and Landforms
    Volume32
    Issue number5
    DOIs
    Publication statusPublished - 2007

    Fingerprint

    floodplain
    river
    statistics
    sedimentation
    multivariate analysis
    paradigm
    texture
    geochemistry
    bank
    sediment
    sedimentary sequence
    science
    mud
    stratigraphy
    creek

    Cite this

    @article{a0e5f54aeedb4cab86f95c1f18dc32c1,
    title = "The use of multivariate statistics to elucidate patterns of floodplain sedimentation at different spatial scales",
    abstract = "Floodplains are depositional features of riverine landscapes that display complex sedimentation patterns that are amenable to multi-scale approaches. We examined sedimentation in the Lower Balonne floodplain, Queensland, Australia, at three different spatial scales: the channel (103 km), floodplain process zone (10 km) and geomorphic unit (102 m) scales, and compared scale-related patterns evident from stratigraphy with those evident from quantitative multivariate analysis. Three stratigraphic sequences were found in the Lower Balonne floodplain: generally fining upward, episodic fining upward, and mud-dominated. Stratigraphical analysis revealed the detailed character of sedimentary sequences embedded within the scale patterns derived from multivariate analysis. Multivariate statistical analyses of a range of textural and geochemical data revealed different patterns of floodplain sedimentation at each scale. At the channel scale, sediment texture and geochemistry were more heterogeneous in the Culgoa River than in Briarie Creek. At the floodplain process zone scale clear patterns of sediment texture and geochemistry were observed along the upper, mid and lower floodplain process zones of Briarie Creek, but not along the Culgoa River. At the geomorphic unit scale, clear patterns of sediment texture and geochemistry were observed among the bank, buried channel and flat floodplain units of the Culgoa River, but were not as clear in Briarie Creek. Recognition of rivers as hierarchically organized systems is an emerging paradigm in river science. Our study supports this paradigm by demonstrating that different sedimentation patterns occur at different scales to reveal a hierarchically organized floodplain environment",
    author = "Martin Thoms and Melissa Parsons and John Foster",
    year = "2007",
    doi = "10.1002/esp.1440",
    language = "English",
    volume = "32",
    pages = "672--686",
    journal = "Earth Surfaces Processes",
    issn = "0197-9337",
    publisher = "John Wiley & Sons",
    number = "5",

    }

    The use of multivariate statistics to elucidate patterns of floodplain sedimentation at different spatial scales. / Thoms, Martin; Parsons, Melissa; Foster, John.

    In: Earth Surface Processes and Landforms, Vol. 32, No. 5, 2007, p. 672-686.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - The use of multivariate statistics to elucidate patterns of floodplain sedimentation at different spatial scales

    AU - Thoms, Martin

    AU - Parsons, Melissa

    AU - Foster, John

    PY - 2007

    Y1 - 2007

    N2 - Floodplains are depositional features of riverine landscapes that display complex sedimentation patterns that are amenable to multi-scale approaches. We examined sedimentation in the Lower Balonne floodplain, Queensland, Australia, at three different spatial scales: the channel (103 km), floodplain process zone (10 km) and geomorphic unit (102 m) scales, and compared scale-related patterns evident from stratigraphy with those evident from quantitative multivariate analysis. Three stratigraphic sequences were found in the Lower Balonne floodplain: generally fining upward, episodic fining upward, and mud-dominated. Stratigraphical analysis revealed the detailed character of sedimentary sequences embedded within the scale patterns derived from multivariate analysis. Multivariate statistical analyses of a range of textural and geochemical data revealed different patterns of floodplain sedimentation at each scale. At the channel scale, sediment texture and geochemistry were more heterogeneous in the Culgoa River than in Briarie Creek. At the floodplain process zone scale clear patterns of sediment texture and geochemistry were observed along the upper, mid and lower floodplain process zones of Briarie Creek, but not along the Culgoa River. At the geomorphic unit scale, clear patterns of sediment texture and geochemistry were observed among the bank, buried channel and flat floodplain units of the Culgoa River, but were not as clear in Briarie Creek. Recognition of rivers as hierarchically organized systems is an emerging paradigm in river science. Our study supports this paradigm by demonstrating that different sedimentation patterns occur at different scales to reveal a hierarchically organized floodplain environment

    AB - Floodplains are depositional features of riverine landscapes that display complex sedimentation patterns that are amenable to multi-scale approaches. We examined sedimentation in the Lower Balonne floodplain, Queensland, Australia, at three different spatial scales: the channel (103 km), floodplain process zone (10 km) and geomorphic unit (102 m) scales, and compared scale-related patterns evident from stratigraphy with those evident from quantitative multivariate analysis. Three stratigraphic sequences were found in the Lower Balonne floodplain: generally fining upward, episodic fining upward, and mud-dominated. Stratigraphical analysis revealed the detailed character of sedimentary sequences embedded within the scale patterns derived from multivariate analysis. Multivariate statistical analyses of a range of textural and geochemical data revealed different patterns of floodplain sedimentation at each scale. At the channel scale, sediment texture and geochemistry were more heterogeneous in the Culgoa River than in Briarie Creek. At the floodplain process zone scale clear patterns of sediment texture and geochemistry were observed along the upper, mid and lower floodplain process zones of Briarie Creek, but not along the Culgoa River. At the geomorphic unit scale, clear patterns of sediment texture and geochemistry were observed among the bank, buried channel and flat floodplain units of the Culgoa River, but were not as clear in Briarie Creek. Recognition of rivers as hierarchically organized systems is an emerging paradigm in river science. Our study supports this paradigm by demonstrating that different sedimentation patterns occur at different scales to reveal a hierarchically organized floodplain environment

    U2 - 10.1002/esp.1440

    DO - 10.1002/esp.1440

    M3 - Article

    VL - 32

    SP - 672

    EP - 686

    JO - Earth Surfaces Processes

    JF - Earth Surfaces Processes

    SN - 0197-9337

    IS - 5

    ER -