The use of the oyster Saccostrea glomerata as a biomonitor of trace metal contamination: intra-sample, local scale and temporal variability and its implications for biomonitoring

Wayne Robinson, Bill Maher, Frank Krikowa, John Nell, Rosalind Hand

    Research output: Contribution to journalArticle

    32 Citations (Scopus)

    Abstract

    Cu, Cd, Zn, Pb and Se concentrations were measured in the bivalve mollusc Saccostrea glomerata(Iredale and Roughly) from two uncontaminated locations, Clyde River Estuary, Batemans Bay and Moona Moona Creek, Jervis Bay, to determine natural variability of metals associated with mass, gender, age, tissue type and site within location. Trace metals were also measured in the Clyde River Estuary over an 11 year period and in five other NSW estuaries (Hastings River, Hunter River, Georges River, Tillgerry Creek and Lake Pambula) over a 13-month period to determine temporal variability and if diploid and triploid oysters accumulate trace metals differently. There were few significant relationships between trace metal concentrations and mass and no significant differences in trace metal concentrations between female and male oysters. Younger oysters (1.3 years) had significantly higher copper concentrations and higher trace metal variability than mature oysters (3 years). Different tissues have different trace metal concentrations with muscle tissues having lower concentrations. Considerable inherent variability occurs in oyster cohorts. Analysing specific tissues did not reduce variability of trace metal concentrations. Comparison of trace metal concentrations at two sites within the Clyde Estuary showed a significant difference in zinc concentrations. Cu, Cd, Zn and Se concentrations were generally higher and less variable in triploids than diploids. Pb had a variable pattern of accumulation with no consistent elevation in diploids or triploids. Inter annual variability of trace metal concentrations was considerable and trace metal concentrations also fluctuated throughout an annual cycle with no clear seasonal trends. Measurement of trace metals at known contaminated locations showed that Saccostrea glomerata accumulates metals in response to contamination. Saccostrea glomerata meet most of the requirements to be a biomonitor of trace metal contamination as they are abundant, sessile/sedentary, easy to identify, provide sufficient tissue for analysis, and accumulate trace metals in response to contamination. However, as trace metal concentrations can vary with mass, age, estuary position, ploidy type and temporally, care must be taken to collect individual organisms of similar mass, age and ploidy type to minimise variability, and from similar consistent positions and times to allow for seasonal changes in environmental conditions. Trace metal concentration variability is higher in young animals, thus to reduce variability, older mature animals could be selected. However, with immature oysters there are no complications because of the effects of spawning i.e. sudden loss of trace metals or body mass
    Original languageEnglish
    Pages (from-to)208-223
    Number of pages16
    JournalEnvironmental Science Processes and Impacts
    Volume7
    Issue number3
    DOIs
    Publication statusPublished - 2005

    Fingerprint

    Ostreidae
    Environmental Monitoring
    biomonitoring
    trace metal
    Contamination
    Metals
    Estuaries
    Rivers
    estuary
    Tissue
    Triploidy
    Diploidy
    river
    ploidy
    contamination
    Trace metals
    Ploidies
    Animals
    Molluscs
    animal

    Cite this

    @article{c73a9486a8f94d909321cb2c9508ad00,
    title = "The use of the oyster Saccostrea glomerata as a biomonitor of trace metal contamination: intra-sample, local scale and temporal variability and its implications for biomonitoring",
    abstract = "Cu, Cd, Zn, Pb and Se concentrations were measured in the bivalve mollusc Saccostrea glomerata(Iredale and Roughly) from two uncontaminated locations, Clyde River Estuary, Batemans Bay and Moona Moona Creek, Jervis Bay, to determine natural variability of metals associated with mass, gender, age, tissue type and site within location. Trace metals were also measured in the Clyde River Estuary over an 11 year period and in five other NSW estuaries (Hastings River, Hunter River, Georges River, Tillgerry Creek and Lake Pambula) over a 13-month period to determine temporal variability and if diploid and triploid oysters accumulate trace metals differently. There were few significant relationships between trace metal concentrations and mass and no significant differences in trace metal concentrations between female and male oysters. Younger oysters (1.3 years) had significantly higher copper concentrations and higher trace metal variability than mature oysters (3 years). Different tissues have different trace metal concentrations with muscle tissues having lower concentrations. Considerable inherent variability occurs in oyster cohorts. Analysing specific tissues did not reduce variability of trace metal concentrations. Comparison of trace metal concentrations at two sites within the Clyde Estuary showed a significant difference in zinc concentrations. Cu, Cd, Zn and Se concentrations were generally higher and less variable in triploids than diploids. Pb had a variable pattern of accumulation with no consistent elevation in diploids or triploids. Inter annual variability of trace metal concentrations was considerable and trace metal concentrations also fluctuated throughout an annual cycle with no clear seasonal trends. Measurement of trace metals at known contaminated locations showed that Saccostrea glomerata accumulates metals in response to contamination. Saccostrea glomerata meet most of the requirements to be a biomonitor of trace metal contamination as they are abundant, sessile/sedentary, easy to identify, provide sufficient tissue for analysis, and accumulate trace metals in response to contamination. However, as trace metal concentrations can vary with mass, age, estuary position, ploidy type and temporally, care must be taken to collect individual organisms of similar mass, age and ploidy type to minimise variability, and from similar consistent positions and times to allow for seasonal changes in environmental conditions. Trace metal concentration variability is higher in young animals, thus to reduce variability, older mature animals could be selected. However, with immature oysters there are no complications because of the effects of spawning i.e. sudden loss of trace metals or body mass",
    author = "Wayne Robinson and Bill Maher and Frank Krikowa and John Nell and Rosalind Hand",
    year = "2005",
    doi = "10.1039/b415295f",
    language = "English",
    volume = "7",
    pages = "208--223",
    journal = "Journal of Environmental Monitoring",
    issn = "1464-0325",
    publisher = "Royal Society of Chemistry",
    number = "3",

    }

    TY - JOUR

    T1 - The use of the oyster Saccostrea glomerata as a biomonitor of trace metal contamination: intra-sample, local scale and temporal variability and its implications for biomonitoring

    AU - Robinson, Wayne

    AU - Maher, Bill

    AU - Krikowa, Frank

    AU - Nell, John

    AU - Hand, Rosalind

    PY - 2005

    Y1 - 2005

    N2 - Cu, Cd, Zn, Pb and Se concentrations were measured in the bivalve mollusc Saccostrea glomerata(Iredale and Roughly) from two uncontaminated locations, Clyde River Estuary, Batemans Bay and Moona Moona Creek, Jervis Bay, to determine natural variability of metals associated with mass, gender, age, tissue type and site within location. Trace metals were also measured in the Clyde River Estuary over an 11 year period and in five other NSW estuaries (Hastings River, Hunter River, Georges River, Tillgerry Creek and Lake Pambula) over a 13-month period to determine temporal variability and if diploid and triploid oysters accumulate trace metals differently. There were few significant relationships between trace metal concentrations and mass and no significant differences in trace metal concentrations between female and male oysters. Younger oysters (1.3 years) had significantly higher copper concentrations and higher trace metal variability than mature oysters (3 years). Different tissues have different trace metal concentrations with muscle tissues having lower concentrations. Considerable inherent variability occurs in oyster cohorts. Analysing specific tissues did not reduce variability of trace metal concentrations. Comparison of trace metal concentrations at two sites within the Clyde Estuary showed a significant difference in zinc concentrations. Cu, Cd, Zn and Se concentrations were generally higher and less variable in triploids than diploids. Pb had a variable pattern of accumulation with no consistent elevation in diploids or triploids. Inter annual variability of trace metal concentrations was considerable and trace metal concentrations also fluctuated throughout an annual cycle with no clear seasonal trends. Measurement of trace metals at known contaminated locations showed that Saccostrea glomerata accumulates metals in response to contamination. Saccostrea glomerata meet most of the requirements to be a biomonitor of trace metal contamination as they are abundant, sessile/sedentary, easy to identify, provide sufficient tissue for analysis, and accumulate trace metals in response to contamination. However, as trace metal concentrations can vary with mass, age, estuary position, ploidy type and temporally, care must be taken to collect individual organisms of similar mass, age and ploidy type to minimise variability, and from similar consistent positions and times to allow for seasonal changes in environmental conditions. Trace metal concentration variability is higher in young animals, thus to reduce variability, older mature animals could be selected. However, with immature oysters there are no complications because of the effects of spawning i.e. sudden loss of trace metals or body mass

    AB - Cu, Cd, Zn, Pb and Se concentrations were measured in the bivalve mollusc Saccostrea glomerata(Iredale and Roughly) from two uncontaminated locations, Clyde River Estuary, Batemans Bay and Moona Moona Creek, Jervis Bay, to determine natural variability of metals associated with mass, gender, age, tissue type and site within location. Trace metals were also measured in the Clyde River Estuary over an 11 year period and in five other NSW estuaries (Hastings River, Hunter River, Georges River, Tillgerry Creek and Lake Pambula) over a 13-month period to determine temporal variability and if diploid and triploid oysters accumulate trace metals differently. There were few significant relationships between trace metal concentrations and mass and no significant differences in trace metal concentrations between female and male oysters. Younger oysters (1.3 years) had significantly higher copper concentrations and higher trace metal variability than mature oysters (3 years). Different tissues have different trace metal concentrations with muscle tissues having lower concentrations. Considerable inherent variability occurs in oyster cohorts. Analysing specific tissues did not reduce variability of trace metal concentrations. Comparison of trace metal concentrations at two sites within the Clyde Estuary showed a significant difference in zinc concentrations. Cu, Cd, Zn and Se concentrations were generally higher and less variable in triploids than diploids. Pb had a variable pattern of accumulation with no consistent elevation in diploids or triploids. Inter annual variability of trace metal concentrations was considerable and trace metal concentrations also fluctuated throughout an annual cycle with no clear seasonal trends. Measurement of trace metals at known contaminated locations showed that Saccostrea glomerata accumulates metals in response to contamination. Saccostrea glomerata meet most of the requirements to be a biomonitor of trace metal contamination as they are abundant, sessile/sedentary, easy to identify, provide sufficient tissue for analysis, and accumulate trace metals in response to contamination. However, as trace metal concentrations can vary with mass, age, estuary position, ploidy type and temporally, care must be taken to collect individual organisms of similar mass, age and ploidy type to minimise variability, and from similar consistent positions and times to allow for seasonal changes in environmental conditions. Trace metal concentration variability is higher in young animals, thus to reduce variability, older mature animals could be selected. However, with immature oysters there are no complications because of the effects of spawning i.e. sudden loss of trace metals or body mass

    U2 - 10.1039/b415295f

    DO - 10.1039/b415295f

    M3 - Article

    VL - 7

    SP - 208

    EP - 223

    JO - Journal of Environmental Monitoring

    JF - Journal of Environmental Monitoring

    SN - 1464-0325

    IS - 3

    ER -