@inproceedings{e2e7377dadfa42b2adcc5ec6d15a0571,
title = "Towards a systematic educational framework for human-machine teaming",
abstract = "Artificial Intelligence (AI) and machine learning (ML) are having a great impact on all aspects of society. However, due to the technical competencies and mathematical understanding required for implementing solutions leveraging these technologies, access to the communities working on these technologies is limited to those having these skills. This limits the ability of domain experts to directly transfer their knowledge and contribute to the development of AI and ML systems. To address this problem, we propose the Human Education AI Teaming (HEAT) framework, in which we draw on human education to design an innovative education system to enable collaboration between humans and AI cognitive agents. The main aim of HEAT is to promote the social integration of AI by allowing domain experts to focus more on communicating a body of knowledge to the machine, and less on the computational, data, and engineering concepts associated with how the machine learns. We follow an educational theory-driven approach to derive the content knowledge and competencies required by each agent. We conclude the paper with a demonstration case study explaining how the complex autonomous guidance of a flock of sheep could leverage HEAT to make the technology accessible by empowering non-AI specialists, livestock farmers in our example.",
keywords = "curriculum development, human-machine teaming, instructional design, machine education, machine teaching",
author = "Finlay Mccall and Aya Hussein and Eleni Petraki and Sondoss ElSawah and HUSSEIN ABBASS",
note = "Funding Information: This research is funded by the Australian Research Council Discovery Grant DP200101211. Publisher Copyright: {\textcopyright} 2021 IEEE.; IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE), TALE 2021 ; Conference date: 05-12-2021 Through 08-12-2021",
year = "2021",
doi = "10.1109/TALE52509.2021.9678853",
language = "English",
isbn = "9781665436878",
series = "TALE 2021 - IEEE International Conference on Engineering, Technology and Education, Proceedings",
publisher = "IEEE, Institute of Electrical and Electronics Engineers",
pages = "375 -- 382",
editor = "Lee, {Mark J. W.}",
booktitle = "TALE 2021 - IEEE International Conference on Engineering, Technology and Education, Proceedings",
address = "United States",
}