Using Semi-supervised Classifier to Forecast Extreme CPU Utilization

Nitin Khosla, D Sharma

Research output: Contribution to journalArticle

6 Downloads (Pure)

Abstract

A semi-supervised classifier is used in this paper is to investigate a model for forecasting unpredictableload on the IT systems and to predict extreme CPU utilization in a complex enterprise environment withlarge number of applications running concurrently. This proposed model forecasts the likelihood of a scenario where extreme load of web traffic impacts the IT systems and this model predicts the CPUutilization under extreme stress conditions. The enterprise IT environment consists of a large number ofapplications running in a real time system. Load features are extracted while analysing an envelope of the patterns of work-load traffic which are hidden in the transactional data of these applications. This method simulates and generates synthetic workload demand patterns, run use-case high priority scenarios in a test environment and use our model to predict the excessive CPU utilization under peak load conditions for validation. Expectation Maximization classifier with forced-learning, attempts to extract and analyse the parameters that can maximize the chances of the model after subsiding the unknown labels. As a result of this model, likelihood of an excessive CPU utilization can be predicted in short duration as compared to few days in a complex enterprise environment. Workload demand prediction and profiling has enormous potential in optimizing usages of IT resources with minimal risk.
Original languageEnglish
Pages (from-to)45-52
Number of pages8
JournalInternational Journal of Artificial Intelligence & Applications
Volume11
Issue number1
DOIs
Publication statusPublished - 31 Jan 2020

    Fingerprint

Cite this