Who do you move? A stochastic population model to guide translocation strategies for an endangered freshwater fish in south-eastern Australia

Charles R. Todd, Mark LINTERMANS

    Research output: Contribution to journalArticle

    11 Citations (Scopus)

    Abstract

    The number of threatened species continues to increase due to a range of anthropogenic disturbances, and many species continue to decline increasing their risk of extinction. Translocation is a widely used management technique to establish new populations to reduce the risk of extinction. There are, however, a range of issues to be considered. For example, for some species the donor population may be impacted by translocation, for other species it must be decided whether to translocate adults or juveniles to establish new populations. The question then becomes who do you move? The endangered Macquarie perch in south-eastern Australia is continuing to decline, with the recent Millennium Drought (1997-2010) and associated events (e.g., bushfires) contributing to dramatic local declines and the need for emergency responses. Successful historic translocations of this species involved adult fish, however the removal of significant numbers of adult fish may now impact source populations and alternative translocation approaches needed investigating. The use of sub-adult or juvenile fish, that would be expected to experience higher mortality, may be an approach to establishing new populations which would have less severe impacts on source populations. However, the number of fish required, frequency of translocation and likelihood of population establishment are unknown. This study outlines the development of a population model to assist in trialling translocation scenarios for establishing new populations of Macquarie perch. The model predicts that translocations of young-of-year fish (age 0+) is unlikely to be successful unless ~600 females are released annually for five years. If translocating yearling (age 1+) fish, annual translocations of >100 females is required to achieve success, with stocking for at least five consecutive years required. If the frequency of recruitment failure or magnitude of Allee effects increases, then translocations of increased numbers of yearlings or prolonged stocking (10 years) is required to achieve success. The addition of small numbers of adult fish in combination with yearlings decreases the number of yearlings required, and increases the chance of success under more stressful scenarios.
    Original languageEnglish
    Pages (from-to)63-72
    Number of pages10
    JournalEcological Modelling
    Volume311
    Issue number1
    DOIs
    Publication statusPublished - 2015

    Fingerprint

    translocation
    fish
    extinction
    Allee effect
    drought
    disturbance
    mortality

    Cite this

    @article{bd9e61faf74b4b43900af9d11a186889,
    title = "Who do you move? A stochastic population model to guide translocation strategies for an endangered freshwater fish in south-eastern Australia",
    abstract = "The number of threatened species continues to increase due to a range of anthropogenic disturbances, and many species continue to decline increasing their risk of extinction. Translocation is a widely used management technique to establish new populations to reduce the risk of extinction. There are, however, a range of issues to be considered. For example, for some species the donor population may be impacted by translocation, for other species it must be decided whether to translocate adults or juveniles to establish new populations. The question then becomes who do you move? The endangered Macquarie perch in south-eastern Australia is continuing to decline, with the recent Millennium Drought (1997-2010) and associated events (e.g., bushfires) contributing to dramatic local declines and the need for emergency responses. Successful historic translocations of this species involved adult fish, however the removal of significant numbers of adult fish may now impact source populations and alternative translocation approaches needed investigating. The use of sub-adult or juvenile fish, that would be expected to experience higher mortality, may be an approach to establishing new populations which would have less severe impacts on source populations. However, the number of fish required, frequency of translocation and likelihood of population establishment are unknown. This study outlines the development of a population model to assist in trialling translocation scenarios for establishing new populations of Macquarie perch. The model predicts that translocations of young-of-year fish (age 0+) is unlikely to be successful unless ~600 females are released annually for five years. If translocating yearling (age 1+) fish, annual translocations of >100 females is required to achieve success, with stocking for at least five consecutive years required. If the frequency of recruitment failure or magnitude of Allee effects increases, then translocations of increased numbers of yearlings or prolonged stocking (10 years) is required to achieve success. The addition of small numbers of adult fish in combination with yearlings decreases the number of yearlings required, and increases the chance of success under more stressful scenarios.",
    author = "Todd, {Charles R.} and Mark LINTERMANS",
    year = "2015",
    doi = "10.1016/j.ecolmodel.2015.05.001",
    language = "English",
    volume = "311",
    pages = "63--72",
    journal = "Ecological Modelling",
    issn = "0304-3800",
    publisher = "Elsevier",
    number = "1",

    }

    TY - JOUR

    T1 - Who do you move? A stochastic population model to guide translocation strategies for an endangered freshwater fish in south-eastern Australia

    AU - Todd, Charles R.

    AU - LINTERMANS, Mark

    PY - 2015

    Y1 - 2015

    N2 - The number of threatened species continues to increase due to a range of anthropogenic disturbances, and many species continue to decline increasing their risk of extinction. Translocation is a widely used management technique to establish new populations to reduce the risk of extinction. There are, however, a range of issues to be considered. For example, for some species the donor population may be impacted by translocation, for other species it must be decided whether to translocate adults or juveniles to establish new populations. The question then becomes who do you move? The endangered Macquarie perch in south-eastern Australia is continuing to decline, with the recent Millennium Drought (1997-2010) and associated events (e.g., bushfires) contributing to dramatic local declines and the need for emergency responses. Successful historic translocations of this species involved adult fish, however the removal of significant numbers of adult fish may now impact source populations and alternative translocation approaches needed investigating. The use of sub-adult or juvenile fish, that would be expected to experience higher mortality, may be an approach to establishing new populations which would have less severe impacts on source populations. However, the number of fish required, frequency of translocation and likelihood of population establishment are unknown. This study outlines the development of a population model to assist in trialling translocation scenarios for establishing new populations of Macquarie perch. The model predicts that translocations of young-of-year fish (age 0+) is unlikely to be successful unless ~600 females are released annually for five years. If translocating yearling (age 1+) fish, annual translocations of >100 females is required to achieve success, with stocking for at least five consecutive years required. If the frequency of recruitment failure or magnitude of Allee effects increases, then translocations of increased numbers of yearlings or prolonged stocking (10 years) is required to achieve success. The addition of small numbers of adult fish in combination with yearlings decreases the number of yearlings required, and increases the chance of success under more stressful scenarios.

    AB - The number of threatened species continues to increase due to a range of anthropogenic disturbances, and many species continue to decline increasing their risk of extinction. Translocation is a widely used management technique to establish new populations to reduce the risk of extinction. There are, however, a range of issues to be considered. For example, for some species the donor population may be impacted by translocation, for other species it must be decided whether to translocate adults or juveniles to establish new populations. The question then becomes who do you move? The endangered Macquarie perch in south-eastern Australia is continuing to decline, with the recent Millennium Drought (1997-2010) and associated events (e.g., bushfires) contributing to dramatic local declines and the need for emergency responses. Successful historic translocations of this species involved adult fish, however the removal of significant numbers of adult fish may now impact source populations and alternative translocation approaches needed investigating. The use of sub-adult or juvenile fish, that would be expected to experience higher mortality, may be an approach to establishing new populations which would have less severe impacts on source populations. However, the number of fish required, frequency of translocation and likelihood of population establishment are unknown. This study outlines the development of a population model to assist in trialling translocation scenarios for establishing new populations of Macquarie perch. The model predicts that translocations of young-of-year fish (age 0+) is unlikely to be successful unless ~600 females are released annually for five years. If translocating yearling (age 1+) fish, annual translocations of >100 females is required to achieve success, with stocking for at least five consecutive years required. If the frequency of recruitment failure or magnitude of Allee effects increases, then translocations of increased numbers of yearlings or prolonged stocking (10 years) is required to achieve success. The addition of small numbers of adult fish in combination with yearlings decreases the number of yearlings required, and increases the chance of success under more stressful scenarios.

    U2 - 10.1016/j.ecolmodel.2015.05.001

    DO - 10.1016/j.ecolmodel.2015.05.001

    M3 - Article

    VL - 311

    SP - 63

    EP - 72

    JO - Ecological Modelling

    JF - Ecological Modelling

    SN - 0304-3800

    IS - 1

    ER -